Article
Scientific peer reviewed
-
Arriagada-Benítez, M., Sepúlveda, M., Munoz-Gama, J. & Buijs, J.C.A.M. (2017). Strategies to automatically derive a process model from a configurable process model based on event data. Applied Sciences, 7(10):1023.
-
Bolt, A., de Leoni, M. & van der Aalst, W.M.P. (2017). Process variant comparison: using event logs to detect differences in behavior and business rules. Information Systems,
-
Cheng, L., Tachmazidis, I., Kotoulas, S. & Antoniou, G. (2017). Design and evaluation of small-large outer joins in cloud computing environments. Journal of Parallel and Distributed Computing, 110, 2-15.
-
Cheng, L., Kotoulas, S., Ward, T.E. & Theodoropoulos, G. (2017). Improving the robustness and performance of parallel joins over distributed systems. Journal of Parallel and Distributed Computing, 109, 310-323.
-
de Leoni, M. & Marrella, A. (2017). Aligning real process executions and prescriptive process models through automated planning. Expert Systems with Applications, 82, 162–183.
-
de Leoni, M., Lanciano, G. & Marrella, A. (2017). A tool for aligning event logs and prescriptive process models through automated planning. CEUR Workshop Proceedings, 1920.
-
González-López de Murillas, E., Fabra, J., Álvarez, P. & Ezpeleta, J. (2017). Parallel computation of the reachability graph of petri net models with semantic information. Software : Practice and Experience, 47(5), 647-668.
-
Hassani, M., Töws, D., Cuzzocrea, A. & Seidl, T. (2017). BFSPMiner: an effective and efficient batch-free algorithm for mining sequential patterns over data streams. International Journal of Data Science and Analytics,
-
Hassani, M. & Seidl, T. (2017). Using internal evaluation measures to validate the quality of diverse stream clustering algorithms. Vietnam Journal of Computer Science, 4(3), 171–183-171–183.
-
Kalenkova, A.A., van der Aalst, W.M.P., Lomazova, I.A. & Rubin, V.A. (2017). Process mining using BPMN: relating event logs and process models. Software and Systems Modeling, 16(4), 1019-1048.
-
Lee, W.L.J., Verbeek, H.M.W., Munoz-Gama, J., van der Aalst, W.M.P. & Sepúlveda, M. (2017). Replay using recomposition : alignment-based conformance checking in the large. CEUR Workshop Proceedings, 1920:157.
-
Li, G. & van der Aalst, W.M.P. (2017). A framework for detecting deviations in complex event logs. Intelligent Data Analysis, 21(4), 759-779.
-
Low, W.Z., van der Aalst, W.M.P., ter Hofstede, A.H.M., Wynn, M.T. & De Weerdt, J. (2017). Change visualisation : analysing the resource and timing differences between two event logs. Information Systems, 65, 106-123.
-
Mitsyuk, A.A., Shugurov, I.S., Kalenkova, A.A. & van der Aalst, W.M.P. (2017). Generating event logs for high-level process models. Simulation Modelling Practice and Theory, 74, 1-16.
-
Pika, A., Leyer, M., Wynn, M.T., Fidge, C.J., Ter Hofstede, A.H.M. & Van Der Aalst, W.M.P. (2017). Mining resource profiles from event logs. ACM Transactions on Management Information Systems, 8(1):1.
-
Polyvyanyy, A., Ouyang, C., Barros, A. & van der Aalst, W.M.P. (2017). Process querying : enabling business intelligence through query-based process analytics. Decision Support Systems, 100, 41-56.
-
Poppe, E., Wynn, M. T., Ter Hofstede, A.H.M., Brown, R., Pini, A. & Van Der Aalst, W.M.P. (2017). Processprofiler3D : A tool for visualising performance differences between process cohorts and process instances. CEUR Workshop Proceedings, 1920:203
-
Raichelson, L., Soffer, P. & Verbeek, H.M.W. (2017). Merging event logs : combining granularity levels for process flow analysis. Information Systems, 71, 211-227.
-
Reijers, H.A., Vanderfeesten, I.T.P., Plomp, M.G.A., Van Gorp, P.M.E., Fahland, D., van de Crommert, W.L.M. & Diaz Garcia, H.D. (2017). Evaluating data-centric process approaches: does the human factor factor in?. Software and Systems Modeling, 16(3), 649-662.
-
Schueller, D., Beecks, C., Hassani, M., Hinnell, J., Brenger, B., Seidl, T. & Mittelberg, I. (2017). Automated pattern analysis in gesture research : similarity measuring in 3D motion capture models of communicative action. Digital Humanities Quarterly, 11(2), 1-14.
-
SteadieSeifi, M., Dellaert, N. P., Nuijten, W. & Van Woensel, T. (2017). A metaheuristic for the multimodal network flow problem with product quality preservation and empty repositioning. Transportation Research. Part B: Methodological, 106, 321-344.
-
Suriadi, S., Wynn, M.T., Xu, J., van der Aalst, W.M.P. & ter Hofstede, A.H.M. (2017). Discovering work prioritisation patterns from event logs. Decision Support Systems, 100, 77-92.
-
van der Aa, H., Leopold, H. & Reijers, Hajo A. (2017). Comparing textual descriptions to process models : the automatic detection of inconsistencies. Information Systems, 64, 447-460.
-
van der Aa, H., Leopold, H., del-Río-Ortega, A., Resinas, M. & Reijers, H.A. (2017). Transforming unstructured natural language descriptions into measurable process performance indicators using Hidden Markov Models. Information Systems, 71, 27-39.
-
van der Aalst, W.M.P., Artale, A., Montali, M. & Tritini, S. (2017). Object-centric behavioral constraints : Integrating data and declarative process modelling. CEUR Workshop Proceedings, 1879:51.
-
van Eck, M.L., Firat, M., Nuijten, W.P.M., Sidorova, N. & van der Aalst, W.M.P. (2017). Human performance-aware scheduling and routing of a multi-skilled workforce. Complex Systems Informatics and Modeling Quarterly. (12), 1-21.
-
van Hulst, D., den Hertog, D. & Nuijten, W.P.M. (2017). Robust shift generation in workforce planning. Computational Management Science, 14(1), 115-134.
-
van Zelst, S.J., Bolt Irondio, A.J., Hassani, M., van Dongen, B.F. & van der Aalst, W.M.P. (2017). Online conformance checking: relating event streams to process models using prefix-alignments. International Journal of Data Science and Analytics.
-
van Zelst, S.J., van Dongen, B.F. & van der Aalst, W.M.P. (2017). Event stream-based process discovery using abstract representations. Knowledge and Information Systems, 1-29.
-
Verbeek, H.M.W., Munoz Gama, J. & van der Aalst, W.M.P. (2017). Divide and conquer: a tool framework for supporting decomposed discovery in process mining. The Computer Journal, 60(11), 1649-1674.
-
Wynn, M.T., Poppe, E., Xu, J., ter Hofstede, A.H.M., Brown, R., Pini, A. & van der Aalst, W.M.P. (2017). ProcessProfiler3D : a visualisation framework for log-based process performance comparison. Decision Support Systems, 100, 93-108.
Scientific not peer reviewed
-
Brochenin, R., Buijs, J.C.A.M., Vahdat, M. & van der Aalst, W.M.P. (2017). Resource usage analysis from a different perspective on MOOC dropout. arXiv, (1710.05917v1),
-
Leemans, M., van der Aalst, W.M.P. & van den Brand, M.G.J. (2017). Recursion aware modeling and discovery for hierarchical software event log analysis (extended). arXiv:1710.09323v1
Editorial
Scientific peer reviewed
-
Bichler, M., Heinzl, A. & van der Aalst, W.M.P. (2017). Business analytics and data science : once again?. Business & Information Systems Engineering : The International Journal of WIRTSCHAFTSINFORMATIK, 59(2), 77-79.
-
Heinzl, A., Bichler, M. & van der Aalst, W.M.P. (2017). Trans-national joint research projects : defying the odds of National Inter-University Competition. Business & Information Systems Engineering : The International Journal of WIRTSCHAFTSINFORMATIK, 59(4), 205-206.
-
van der Aalst, W.M.P., Bichler, M. & Heinzl, A. (2017). Responsible Data Science. Business & Information Systems Engineering : The International Journal of WIRTSCHAFTSINFORMATIK, 59(5), 311-313.
Review article
Scientific peer reviewed
-
La Rosa, M., Van Der Aalst, W.M.P., Dumas, M. & Milani, F.P. (2017). Business process variability modeling : a survey. ACM Computing Surveys, 50(1):2
Chapter
Scientific peer reviewed
-
De Murillas, E.G.L., Reijers, H.A. & van der Aalst, W.M.P. (2017). Everything you always wanted to know about your process, but did not know how to ask. Business Process Management Workshops (pp. 296-309). (Lecture Notes in Business Information Processing, No. 281). BHRA / Springer Verlag.
-
Hiemstra, D., Tax, N. & Bockting, S. (2017). Ranking learning-to-rank methods. In N. Ferro, C. Lucchese, M. Maistro & R. Perego (Eds.), Proceedings of the 1st International Workshop on LEARning Next gEneration Rankers (pp. 3-3). (CEUR Workshop Proceedings, No. 2007). Aachen.
-
Tax, N., Sidorova, N., Haakma, R. & van der Aalst, W.M.P. (2017). Mining process model descriptions of daily life through event abstraction. Intelligent Systems and Applications (Studies in Computational Intelligence, No. 751).
-
Verbeek, H.M.W. (2017). Decomposed replay using hiding and reduction as abstraction. In J. Kleijn, W. Penchek & M. Koutny (Eds.), Transactions on Petri Nets and Other Models of Concurrency XII (pp. 166-186). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), No. 10470 LNCS). Dordrecht: Springer Netherlands.
Conference contribution
Scientific peer reviewed
-
Assy, N., van Dongen, B.F. & van der Aalst, W.M.P. (2017). Discovering hierarchical consolidated models from process families. Advanced Information Systems Engineering (pp. 314-329). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), No. 10253 LNCS). Dordrecht: Springer.
-
Bolt Iriondo, A.J., de Leoni, M., van der Aalst, W.M.P. & Gorissen, P. (2017). Business process reporting using process mining, analytic workflows and process cubes : A case study in education. In R.-M. Stefanie & C. Paolo (Eds.), Data-Driven Process Discovery and Analysis (pp. 28-53). (Lecture Notes in Business Information Processing, No. 244). Dordrecht: Springer.
-
Bolt Iriondo, A.J., van der Aalst, W.M.P. & de Leoni, M. (2017). Finding process variants in event logs (short paper). In W. Gaaloul, H. Panetto, A. Paschke, C. Agostino Ardagna, R. Meersman, M. Papazoglou & C. Debruyne (Eds.), On the Move to Meaningful Internet Systems. OTM 2017 Conferences (pp. 45-52). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), No. 10573 LNCS). Dordrecht: Springer Netherlands.
-
Chatain, T., Carmona, J. & van Dongen, B.F. (2017). Alignment-based trace clustering. In H. Ma, G. Guizzardi, O. Pastor & H.C. Mayr (Eds.), Conceptual Modeling – 36th International Conference, ER 2017, Proceedings (pp. 295-308). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), No. 10650 LNCS). BHRA / Springer Verlag.
-
Cheng, L. & Li, T. (2017). Efficient data redistribution to speedup big data analytics in large systems. Proceedings of the 23rd IEEE International Conference on High Performance Computing, 19-22 December 2016, Hyderabad, India (pp. 91-100). Piscataway: IEEE.
-
Cheng, L., van Dongen, B.F. & van der Aalst, W.M.P. (2017). Efficient event correlation over distributed systems. Proceedings – 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGRID 2017 (pp. 1-10). Piscataway: Institute of Electrical and Electronics Engineers (IEEE).
-
Cheng, L., Wang, Y., Pei, Y. & Epema, D.H.J. (2017). A coflow-based co-optimization framework for high-performance data analytics. 2017 46th International Conference on Parallel Processing (ICPP), 14-17 August 2017, Bristol, United Kingdom (pp. 392-401). Piscataway: Institute of Electrical and Electronics Engineers (IEEE).
-
Dalmas, B., Tax, N. & Norre, S. (2017). Heuristics for high-utility local process model mining. In J. Carmona, W. van der Aalst & R. Bergenthum (Eds.), Proceedings of the International Workshop on Algorithms & Theories for the Analysis of Event Data (pp. 106-121). (CEUR Workshops proceedings, No. 1847). CEUR.
-
Dees, M., de Leoni, M. & Mannhardt, F. (2017). Enhancing process models to improve business performance : a methodology and case studies. In M. Papazoglou, C. Agostino Ardagna, W. Gaaloul, R. Meersman, A. Paschke, C. Debruyne & H. Panetto (Eds.), On the Move to Meaningful Internet Systems. OTM 2017 Conferences (pp. 232-251). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), No. 10573 LNCS). Dordrecht: Springer Netherlands.
-
Dixit, P.M., Garcia Caballero, H.S., Corvo, A., Hompes, B.F.A., Buijs, J.C.A.M. & van der Aalst, W.M.P. (2017). Enabling interactive process analysis with process mining and visual analytics. Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies (pp. 573-584).
-
Dixit, P.M., Buijs, J.C.A.M., van der Aalst, W.M.P., Hompes, B.F.A. & Buurman, J. (2017). Using domain knowledge to enhance process mining results. In S. Rinderle-Ma & P. Ceravolo (Eds.), Data-Driven Process Discovery and Analysis (pp. 76-104). (Lecture Notes in Business Information Processing, No. 244). Dordrecht: Springer.
-
de Leoni, M. & Marrella, A. (2017). How planning techniques can help process mining : the conformance-checking case. Proceedings of the 25th Italian Symposium on Advanced Database (SEBD 2017), 25-29 June 2017, Squillace Lido, Italy
-
Fani Sani, M., van der Aalst, W.M.P., Bolt Irondo, A.J. & García-Algarra, J. (2017). Subgroup discovery in process mining. In W. Abramowicz (Ed.), Business Information Systems (pp. 237-252). (Lecture Notes in Business Information Processing, No. 288). Dordrecht: Springer.
-
González López De Murillas, E., Helm, E., Reijers, H.A. & Küng, J. (2017). Audit trails in OpenSLEX : paving the road for process mining in healthcare. In M. Bursa, M. Elena Renda, A. Holzinger & S. Khuri (Eds.), Information Technology in Bio- and Medical Informatics (pp. 82-91). (ITBAM 2017, 8th International Conference on Information Technology in Bio- and Medical Informatics, Lyon, France). Dordrecht: Springer.
-
Hassani, M., Töws, D., Cuzzocrea, A. & Seidl, T. (2017). BFSPMiner: an effective and efficient batch-free algorithm for mining sequential patterns over data streams. Proceedings of BigMine workshop @KDD
-
Hassani, M., Töws, D. & Seidl, T. (2017). Understanding the bigger picture : Batch-free exploration of streaming sequential patterns with accurate prediction. 32nd Annual ACM Symposium on Applied Computing, SAC 2017 (pp. 866-869). Marrakech, Morocco: ACM
-
Hompes, B.F.A., Maaradji, Abderrahmane, La Rosa, M., Dumas, M., Buijs, J.C.A.M. & van der Aalst, W.M.P. (2017). Discovering causal factors explaining business process performance. CAiSE 2017 (pp. 177-191). Essen: Springer International Publishing AG.
-
Hompes, B.F.A., Buijs, J.C.A.M., van der Aalst, W.M.P., Dixit, P.M. & Buurman, J. (2017). Detecting changes in process behavior using comparative case clustering. In S. Rinderle-Ma & P. Ceravolo (Eds.), Data-Driven Process Discovery and Analysis (pp. 54-75). (Lecture Notes in Business Information Processing, No. 244). Dordrecht: Springer.
-
Jabeen, F., Leopold, H. & Reijers, H.A. (2017). How to make process model matching work better? An analysis of current similarity measures. Business Information Systems – 20th International Conference, BIS 2017, Proceedings (pp. 181-193). (Lecture Notes in Business Information Processing, No. 288). BHRA / Springer Verlag.
-
Labba, C., Assy, N., Saoud, N.B.B. & Gaaloul, W. (2017). Adaptive deployment of service-based processes into cloud federations. In Q. Li, Y. Gao, W. Jia, L. Chen, F. Dzerzhinskiy, , A. Klimenko, S.V. Klimenko, A. Bouguettaya & X. Zhang (Eds.), Web Information Systems Engineering – WISE 2017 (pp. 275-289). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), No. 10569 LNCS). Dordrecht: Springer Netherlands.
-
Leemans, M. & van der Aalst, W.M.P. (2017). Modeling and discovering cancelation behavior. In W. Galoul, H. Panetto, C. Agostino Ardagna, C. Debruyne, M. Papazoglou & A. Paschke (Eds.), On the Move to Meaningful Internet Systems. OTM 2017 Conferences (pp. 93-113). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), No. 10573 LNCS). Dordrecht: Springer Netherlands.
-
Li, G., de Carvalho, R.M. & Van der Aalst, W.M.P. (2017). Automatic discovery of object-centric behavioral constraint models. In W. Abramowicz (Ed.), Business Information Systems: 20th International Conference, BIS 2017, Poznan, Poland, June 28–30, 2017, Proceedings (pp. 43-58). (Lecture Notes in Business Information Processing, No. 288). Dordrecht: Springer.
-
Lu, X., Fahland, D., Andrews, R., Suriadi, S., Wynn, M.T., ter Hofstede, A.H.M. & van der Aalst, W.M.P. (2017). Semi-supervised log pattern detection and exploration using event concurrence and contextual information. In C.A. Ardagna, W. Gaaloul, H. Panetto, M. Papazoglou, C. Debruyne, R. Meersman & A. Paschke (Eds.), On the Move to Meaningful Internet Systems. OTM 2017 Conferences (pp. 154-174). (LNCS, No. 10573). Dordrecht: Springer Netherlands.
-
Lu, Y., Hassani, M. & Seidl, T. (2017). Incremental temporal pattern mining using efficient batch-free stream clustering. SSDBM 2017 (pp. 1-12). New York: ACM.
-
Mannhardt, F. & Tax, N. (2017). Unsupervised event abstraction using pattern abstraction and local process models. RADAR+EMISA 2017, June 12-13, 2017, Essen, Germany (pp. 55-63). (CEUR Workshop Proceedings, No. 1859). s.l.: CEUR-WS.org.
-
Mannhardt, F., de Leoni, M., Reijers, H.A. & van der Aalst, W.M.P. (2017). Data-driven process discovery : revealing conditional infrequent behavior from event logs. In Eric Dubois & Klaus Pohl (Eds.), Advanced Information Systems Engineering: 29th International Conference, CAiSE 2017, Essen, Germany, June 12-16, 2017, Proceedings (pp. 545-560). (Lecture Notes in Computer Science, No. 10253). Cham: Springer.
-
Mannhardt, F. & Blinde, D. (2017). Analyzing the trajectories of patients with sepsis using process mining. RADAR+EMISA 2017, Essen, Germany, June 12-13, 2017 (pp. 72-80). (CEUR Workshop Proceedings, No. 1859). CEUR-WS.org.
-
Mannhardt, F., de Leoni, M., & Reijers, H.A. (2017). Heuristic mining revamped : an interactive, data-aware, and conformance-aware miner. Proceedings of the Demo Session of the 15th International Conference on Business Process Management (BPM 2017, Barcelona, Spain, September 10-September 15, 2017) (pp. 1-5).
-
Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P. & Toussaint, P.J. (2017). From low-level events to activities : a pattern-based approach. 8th International Workshop on Enterprise Modelling and Information Systems Architectures (EMISA 2017), 12-13 June 2017, Essen, Germany (pp. 47-47). (Mitteilungen der GI-Fachgruppe Entwicklungsmethoden für Informationssysteme und deren Anwendung, No. 37).
-
Scharwächter, E., Müller, E., Donges, J., Hassani, M. & Seidl, T. (2017). Detecting change processes in dynamic networks by frequent graph evolution rule mining. 16th IEEE International Conference on Data Mining, ICDM 2016; Barcelona, Catalonia; Spain; 12 December 2016 through 15 December 2016 (pp. 1191-1196). Piscataway: IEEE.
-
Syamsiyah, A., van Dongen, B.F. & van der Aalst, W.M.P. (2017). Discovering social networks instantly : Moving process mining computations to the database and data entry time. In P. Bera, J. Gulden, I. Reinhartz-Berger, W. Guédria & S. Nurcan (Eds.), Enterprise, Business-Process and Information Systems Modeling (pp. 51-67). (Lecture Notes in Business Information Processing, No. 287). Dordrecht: Springer.
-
Syamsiyah, A., Bolt Irondo, A.J., Cheng, L., Hompes, B.F.A., Jagadeesh Chandra Bose, R.P., van Dongen, B.F. & van der Aalst, W.M.P. (2017). Business process comparison : a methodology and case study. In W. Abramowicz (Ed.), Business Information Systems (pp. 253-267). (Lecture Notes in Business Information Processing, No. 288). Dordrecht: Springer.
-
Tax, N., Verenich, I., La Rosa, M. & Dumas, M. (2017). Predictive business process monitoring with LSTM neural networks. In Eric Dubois & Klaus Pohl (Eds.), International Conference on Advanced Information Systems Engineering Springer.
-
Tax, N., Sidorova, N., van der Aalst, W.M.P. & Haakma, R. (2017). Heuristic approaches for generating local process models through log projections. Proceedings of IEEE Symposium on Computational Intelligence and Data Mining, December 6-9, 2016, Athens, Greece (pp. 1-8). Piscataway: IEEE.
-
Tax, N., Sidorova, N., Haakma, R. & van der Aalst, W.M.P. (2017). Event abstraction for process mining using supervised learning techniques. In Y. Bi, S. Kapoor & R. Bhatia (Eds.), Proceedings of the SAI Intelligent Systems Conference (IntelliSys 2016), 21-22 September 2016, London, United Kingdom (pp. 251-269). (LNNS, No. 15). Dordrecht: Springer Netherlands.
-
Tax, N., Verenich, I., La Rosa, M. & Dumas, M. (2017). Predictive business process monitoring with LSTMs. In E. Postma, G. Fletcher, V. Menkovski, P. van der Putten, W. Duivesteijn, M. Pechenizkiy & J. Vanschoren (Eds.), Proceedings of the Twenty-Sixth Benelux Conference on Machine Learning (BENELEARN) (pp. 170-172).
-
Tax, N., Sidorova, N. & van der Aalst, W.M.P. (2017). Local process models: pattern mining with process models. In E. Postma, G. Fletcher, V. Menkovski, P. van der Putten, W. Duivesteijn, M. Pechenizkiy & J. Vanschoren (Eds.), Proceedings of the Twenty-Sixth Benelux Conference on Machine Learning (BENELEARN) (pp. 83-86).
-
van der Aa, H., Leopold, H. & Reijers, H.A. (2017). Checking process compliance on the basis of uncertain event-to-activity mappings. Advanced Information Systems Engineering – 29th International Conference, CAiSE 2017 (pp. 79-93). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), No. 10253 LNCS). BHRA / Springer Verlag.
-
Van Der Aalst, W.M.P. (2017). Process cubes : slicing, dicing, rolling up and drilling down event data for process mining. In J. Liu, M.T. Wynn & M. Song (Eds.), Asia Pacific Business Process Management (pp. 1-22). (Lecture Notes in Business Information Processing, No. 159). Dordrecht: Springer Netherlands.
-
van der Aalst, Wil & Best, Eike (2017). Application and Theory of Petri Nets and Concurrency : 38th International Conference, PETRI NETS 2017 Zaragoza, Spain, June 25–30, 2017 Proceedings. In W.M.P. van der Aalst & E. Best (Eds.), Application and Theory of Petri Nets and Concurrency – 38th International Conference, PETRI NETS 2017, Proceedings (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), No. 10258 LNCS). Dordrecht: Springer.
-
van der Aalst, W.M.P. (2017). Responsible data science : using event data in a “people friendly” manner. In O. Camp, J. Cordeiro, M.M. Missikoff, L.A. Maciaszek & S. Hammoudi (Eds.), Enterprise Information Systems (pp. 3-28). (Lecture Notes in Business Information Processing, No. 291). Dordrecht: Springer.
-
Van Dongen, B.F., Carmona, J., Chatain, T. & Taymouri, F. (2017). Aligning modeled and observed behavior : a compromise between computation complexity and quality. In E. Dubois & K. Pohl (Eds.), Advanced Information Systems Engineering (pp. 94-109). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), No. 10253 LNCS). Dordrecht: Springer Netherlands.
-
van Eck, M.L., Sidorova, N. & van der Aalst, W.M.P. (2017). Composite state machine miner : discovering and exploring multi-perspective processes. In C. Cabanillas & L. Azevedo (Eds.), Proceedings of the BPM Demo Track 2016 (pp. 73-77). (CEUR Workshop Proceedings, No. 1789). CEUR-WS.org.
-
van Eck, M.L., Sidorova, N. & van der Aalst, W.M.P. (2017). Guided interaction exploration in artifact-centric process models. Proceedings of the 19th IEEE Conference on Business Informatics, CBI 2017 IEEE.
-
van Zelst, S.J., Bolt Iriondo, A.J., Hassani, M., van Dongen, B.F. & van der Aalst, W.M.P. (2017). Online conformance checking: relating event streams to process models using prefix-alignments. Proceedings of BigMine @KDD
-
van Zelst, S.J., Bolt Iriondo, A.J. & van Dongen, B.F. (2017). Tuning alignment computation : an experimental evaluation. In J. Carmona, W. van der Aalst & R. Bergenthum (Eds.), Algorithms and Theories for the Analysis of Event Data 2017. Proceedings of the International Workshop on Algorithms & Theories for the Analysis of Event Data (ATAED 2017),Zaragoza, Spain, June 26–27, 2017 (pp. 6-20). (CEUR Workshop Proceedings, No. 1847).
Paper
Scientific
-
Garcia Caballero, H.S., Corvo, A., Dixit, P.M. & Westenberg, M.A. (2017). Visual analytics for evaluating clinical pathways.
-
Garcia Caballero, H.S., Westenberg, M.A., Verbeek, H.M.W. & van der Aalst, W.M.P. (2017). Visual analytics for soundness verification of process models.
Other research output
Report
Scientific
Phd Thesis 1 (Research TU/e / Graduation TU/e)
Scientific
-
Leemans, S.J.J. (2017). Robust process mining with guarantees. Eindhoven: Technische Universiteit Eindhoven. ((Co-)promot.: Wil van der Aalst & Dirk Fahland).
-
Ramezani Taghiabadi, E. (2017). Understanding non-compliance. Eindhoven: Technische Universiteit Eindhoven. ((Co-)promot.: Wil van der Aalst & Dirk Fahland).
Abstract
Other research output
-
Firat, M., Dellaert, N.P. & Nuijten, W.P.M. (2017). Incorporating linear optimization into routing problems.