

AIS Meeting S.J. van Zelst July 17, 2014

TU/e Technische Universiteit Eindhoven University of Technology

Where innovation starts

Presentation goal

Outline

Preliminaries

Prefix closed language

Parikh vectors

Arc labels

Language-based theory of regions

Place validness

Decision variables

Definition

ILP Miner

Place expressiveness

ILP Formulation

Challenges

Performance

Noise

Approach

Outline

Preliminaries

Prefix closed language

Parikh vectors

Arc labels

Language-based theory of regions

Place validness

Decision variables

Dofinition

ILP Miner

Place expressiveness

ILP Formulation

Challenges

Performance

Noise

Approach

Ouestions & Discussion

/ Department of Mathematics and Computer Science

Prefix closed language

Prefix closed language

$$\mathcal{L}_r = \{ \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

Prefix closed language

$$\mathcal{L}_r = \{ \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

$$w = w' \circ l$$

$$w = w' \circ l$$

•
$$w = \langle a, b, b, c \rangle$$
 ($w' = \langle a, b, b \rangle$)

$$w = w' \circ l$$

•
$$w = \langle a, b, b, c \rangle$$
 ($w' = \langle a, b, b \rangle$)

$$\overrightarrow{w}, \overrightarrow{w}' \in \mathbb{Z}^{\mathcal{A}}$$

$$w = w' \circ l$$

•
$$w = \langle a, b, b, c \rangle$$
 ($w' = \langle a, b, b \rangle$)

$$\overrightarrow{w}, \overrightarrow{w}' \in \mathbb{Z}^{\mathcal{A}}$$

$$\overrightarrow{w}(a) = 1, \overrightarrow{w}(b) = 2, \overrightarrow{w}(c) = 1$$

$$w = w' \circ l$$

•
$$w = \langle a, b, b, c \rangle$$
 ($w' = \langle a, b, b \rangle$)

$$\overrightarrow{w}, \overrightarrow{w}' \in \mathbb{Z}^{\mathcal{A}}$$

$$\overrightarrow{w}(a) = 1, \overrightarrow{w}(b) = 2, \overrightarrow{w}(c) = 1$$

$$\overrightarrow{w}'(a) = 1, \overrightarrow{w}'(b) = 2, \overrightarrow{w}'(c) = 0$$

Arc labels

Outline

Preliminaries

Prefix closed language Parikh vectors

Language-based theory of regions

Place validness

Decision variables

Definition

ILP Miner

Place expressiveness

ILP Formulation

Challenges

Performance

Noise

Approach

Questions & Discussion

Place validness

$$\mathcal{L}_r = \{ \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

Place validness

 $\mathcal{L}_r = \{ \langle a, b, d \rangle, \langle a, c, d \rangle \}$

Place validness

 $\mathcal{L}_r = \{ \langle a, b, d \rangle, \langle a, c, d \rangle \}$

Place validness

 $\mathcal{L}_r = \{\langle a, b, d \rangle, \langle a, c, d \rangle \}$

Decision variables

 $\overrightarrow{x}, \overrightarrow{y} \in \{0,1\}^{\mathcal{A}}$

- $\overrightarrow{x}, \overrightarrow{y} \in \{0,1\}^{\mathcal{A}}$
- $\overrightarrow{x}(a)=1\Longrightarrow a\in ullet p, \overrightarrow{x}(a)=0\Longrightarrow a
 otin p$

$$\overrightarrow{x}, \overrightarrow{y} \in \{0,1\}^{\mathcal{A}}$$

$$\overrightarrow{x}(a) = 1 \Longrightarrow a \in \bullet p, \overrightarrow{x}(a) = 0 \Longrightarrow a \notin \bullet p$$

$$\overrightarrow{y}(a) = 1 \Longrightarrow a \in p \bullet, \ \overrightarrow{y}(a) = 0 \Longrightarrow a \notin p \bullet$$

- $\overrightarrow{x}, \overrightarrow{y} \in \{0,1\}^{\mathcal{A}}$
- $\overrightarrow{x}(a) = 1 \Longrightarrow a \in \bullet p, \overrightarrow{x}(a) = 0 \Longrightarrow a \notin \bullet p$
- $\overrightarrow{y}(a) = 1 \Longrightarrow a \in p \bullet, \overrightarrow{y}(a) = 0 \Longrightarrow a \notin p \bullet$

$$\overrightarrow{x}, \overrightarrow{y} \in \{0,1\}^{\mathcal{A}}$$

$$\overrightarrow{x}(a) = 1 \Longrightarrow a \in \bullet p, \overrightarrow{x}(a) = 0 \Longrightarrow a \notin \bullet p$$

$$\overrightarrow{y}(a) = 1 \Longrightarrow a \in p \bullet, \ \overrightarrow{y}(a) = 0 \Longrightarrow a \notin p \bullet$$

$$\overrightarrow{x}(a) = 1, \overrightarrow{x}(b) = 0, \overrightarrow{x}(c) = 0, \overrightarrow{x}(d) = 0$$

Decision variables

$$\overrightarrow{x}, \overrightarrow{y} \in \{0,1\}^{\mathcal{A}}$$

$$\overrightarrow{x}(a) = 1 \Longrightarrow a \in \bullet p, \overrightarrow{x}(a) = 0 \Longrightarrow a \notin \bullet p$$

$$\overrightarrow{y}(a) = 1 \Longrightarrow a \in p \bullet, \overrightarrow{y}(a) = 0 \Longrightarrow a \notin p \bullet$$

c

d

$$\overrightarrow{x}(a) = 1, \overrightarrow{x}(b) = 0, \overrightarrow{x}(c) = 0, \overrightarrow{x}(d) = 0$$

$$\overrightarrow{y}(a) = 0, \overrightarrow{y}(b) = 1, \overrightarrow{y}(c) = 0, \overrightarrow{y}(d) = 0$$
equation of Mathematic and Computer Science

Decision variables

 $\overline{m} \in \{0,1\}$

Decision variables

▶ $\overline{m} \in \{0, 1\}$

Decision variables

 $ightharpoonup \overline{m} \in \{0,1\}$

 $ightharpoonup \overline{m} = 1$

Definition

 $\qquad \qquad \textbf{Triplet assignment} \ (\overline{m}, \overrightarrow{x}, \overrightarrow{y}) \\$

- ▶ Triplet assignment $(\overline{m}, \overrightarrow{x}, \overrightarrow{y})$
- $\forall w = w' \circ l \in \{\mathcal{L}_p \setminus \epsilon\}, \ w' \in \mathcal{L}_p, \ l \in \mathcal{A}:$

- ► Triplet assignment $(\overline{m}, \overrightarrow{x}, \overrightarrow{y})$
- $\forall w = w' \circ l \in \{\mathcal{L}_p \setminus \epsilon\}, \ w' \in \mathcal{L}_p, \ l \in \mathcal{A}:$
- $\overline{m} + \sum_{l \in \mathcal{A}} (\overrightarrow{w'}(l) \cdot \overrightarrow{x}(l) \overrightarrow{w}(l) \cdot \overrightarrow{y}(l)) \ge 0$

- ► Triplet assignment $(\overline{m}, \overrightarrow{x}, \overrightarrow{y})$
- $\forall w = w' \circ l \in \{\mathcal{L}_p \setminus \epsilon\}, \ w' \in \mathcal{L}_p, \ l \in \mathcal{A}:$
- $\overline{m} + \sum_{l \in \mathcal{A}} (\overrightarrow{w'}(l) \cdot \overrightarrow{x}(l) \overrightarrow{w}(l) \cdot \overrightarrow{y}(l)) \ge 0$

- $A = \{a, b, c, d\}$
- $\mathcal{L}_r = \{ \langle a, b, d \rangle, \langle a, c, d \rangle \}$

$$\overline{m} + \sum_{l \in \mathcal{A}} (\overrightarrow{w'}(l) \cdot \overrightarrow{x}(l) - \overrightarrow{w}(l) \cdot \overrightarrow{y}(l)) \ge 0$$

- $A = \{a, b, c, d\}$
- $\mathcal{L}_r = \{ \langle a, b, d \rangle, \langle a, c, d \rangle \}$
- $\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$

$$\overline{m} + \sum_{l \in \mathcal{A}} (\overrightarrow{w'}(l) \cdot \overrightarrow{x}(l) - \overrightarrow{w}(l) \cdot \overrightarrow{y}(l)) \ge 0$$

•
$$A = \{a, b, c, d\}$$

$$\mathcal{L}_r = \{ \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

$$\mathbf{v} = \epsilon \circ a$$

•
$$\overline{m} - y_a \ge 0$$

$$\overline{m} + \sum_{l \in \mathcal{A}} (\overrightarrow{w'}(l) \cdot \overrightarrow{x}(l) - \overrightarrow{w}(l) \cdot \overrightarrow{y}(l)) \ge 0$$

•
$$A = \{a, b, c, d\}$$

$$\mathcal{L}_r = \{ \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

$$\mathbf{v} = \langle a \rangle \circ b$$

•
$$\overline{m} - y_a \ge 0$$

•
$$\overline{m} - y_a + x_a - y_b \ge 0$$

$$\overline{m} + \sum_{l \in \mathcal{A}} (\overrightarrow{w'}(l) \cdot \overrightarrow{x}(l) - \overrightarrow{w}(l) \cdot \overrightarrow{y}(l)) \ge 0$$

•
$$A = \{a, b, c, d\}$$

$$\mathcal{L}_r = \{ \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

$$\mathbf{v} = \langle a \rangle \circ c$$

•
$$\overline{m} - y_a \ge 0$$

•
$$\overline{m} - y_a + x_a - y_b \ge 0$$

•
$$\overline{m} - y_a + x_a - y_c \ge 0$$

$$\overline{m} + \sum_{l \in \mathcal{A}} (\overrightarrow{w'}(l) \cdot \overrightarrow{x}(l) - \overrightarrow{w}(l) \cdot \overrightarrow{y}(l)) \ge 0$$

$$A = \{a, b, c, d\}$$

$$\mathcal{L}_r = \{ \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

$$\mathbf{v} = \langle a, b \rangle \circ d$$

•
$$\overline{m} - y_a \ge 0$$

•
$$\overline{m} - y_a + x_a - y_b \ge 0$$

•
$$\overline{m} - y_a + x_a - y_c \ge 0$$

•
$$\overline{m} - y_a + x_a - y_b + x_b - y_d \ge 0$$

$$\overline{m} + \sum_{l \in \mathcal{A}} (\overrightarrow{w'}(l) \cdot \overrightarrow{x}(l) - \overrightarrow{w}(l) \cdot \overrightarrow{y}(l)) \ge 0$$

$$\rightarrow \mathcal{A} = \{a, b, c, d\}$$

$$\mathcal{L}_r = \{ \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

$$\mathbf{v} = \langle a, c \rangle \circ d$$

•
$$\overline{m} - y_a \ge 0$$

•
$$\overline{m} - y_a + x_a - y_b \ge 0$$

•
$$\overline{m} - y_a + x_a - y_c > 0$$

$$\bullet \ \overline{m} - y_a + x_a - y_b + x_b - y_d \ge 0$$

$$\overline{m} - y_a + x_a - y_c + x_c - y_d \ge 0$$

Definition

 $\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$

Definition

 $\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$

c

$$\overline{m} - y_a \ge 0$$

Definition

 $\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$

c

▶
$$0 - 0 \ge 0$$
 ✓

Definition

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

|c|

$$-0 - 0 > 0$$

$$\overline{m} - y_a + x_a - y_b \ge 0$$

Definition

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

c

▶
$$0 - 0 > 0$$
 ✓

$$0 - 0 + 1 - 1 \ge 0$$

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

$$0 - 0 > 0$$

$$0 - 0 + 1 - 1 \ge 0$$

$$\overline{m} - y_a + x_a - y_c \ge 0$$

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

$$0 - 0 > 0$$

$$0 - 0 + 1 - 1 \ge 0$$

$$0 - 0 + 1 - 0 \ge 0$$

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

▶
$$0-0+1-1 \ge 0$$
 ✓

$$0 - 0 + 1 - 0 \ge 0$$

$$\overline{m} - y_a + x_a - y_b + x_b - y_d \ge 0$$

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

▶
$$0 - 0 \ge 0$$
 ✓

$$0 - 0 + 1 - 1 \ge 0$$

$$0 - 0 + 1 - 0 \ge 0$$

$$0 - 0 + 1 - 1 + 0 - 0 > 0$$

Definition

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

c

$$0 - 0 > 0$$

$$0 - 0 + 1 - 1 \ge 0$$

$$0 - 0 + 1 - 0 \ge 0$$

$$0 - 0 + 1 - 1 + 0 - 0 > 0$$

$$\overline{m} - y_a + x_a - y_c + x_c - y_d > 0$$

Definition

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

|c|

$$0 - 0 > 0$$

$$0 - 0 + 1 - 1 \ge 0$$

$$0 - 0 + 1 - 0 \ge 0$$

$$-0-0+1-1+0-0 \ge 0$$

$$0 - 0 + 1 - 0 + 0 - 0 > 0$$

Definition

 $\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$

Definition

 $\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$

 $\overline{m} - y_a \ge 0$

Definition

 $\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$

c

▶ $0-1 \ge 0$ ×

Definition

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

|c|

$$-0-1>0$$

$$\overline{m} - y_a + x_a - y_b \ge 0$$

Definition

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

| c

▶
$$0-1 \ge 0$$
 ×

$$0 - 1 + 0 - 0 \ge 0$$

Definition

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

c

$$-0-1>0$$

$$0 - 1 + 0 - 0 \ge 0$$

$$\overline{m} - y_a + x_a - y_c \ge 0$$

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

$$0 - 1 + 0 - 0 \ge 0$$

$$-0-1+0-0 \ge 0$$

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

▶
$$0-1 \ge 0$$
 ×

$$0 - 1 + 0 - 0 \ge 0$$

$$-0-1+0-0 \ge 0$$
 X

$$\overline{m} - y_a + x_a - y_b + x_b - y_d \ge 0$$

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

$$0 - 1 + 0 - 0 \ge 0$$

$$-0-1+0-0 \ge 0$$
 X

$$-0-1+0-0+1-0 \ge 0$$

Definition

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

$$-0-1>0$$

$$0 - 1 + 0 - 0 \ge 0$$

$$0 - 1 + 0 - 0 \ge 0$$

$$0 - 1 + 0 - 0 + 1 - 0 > 0$$

$$\overline{m} - y_a + x_a - y_c + x_c - y_d \ge 0$$

TUe Technische Universiteit Eindhoven University of Technology

Definition

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

C

$$-0-1>0$$

$$0 - 1 + 0 - 0 \ge 0$$

$$0 - 1 + 0 - 0 \ge 0$$

$$0 - 1 + 0 - 0 + 1 - 0 > 0$$

$$-0-1+0-0+0-0>0$$

Definition

 $\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$

Definition

 $\mathcal{L}_p = \{ \epsilon, \langle \mathbf{a} \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$

 $\overline{m} - y_a \ge 0$

Definition

$$\mathcal{L}_p = \{\epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle\}$$

c d

▶
$$1-1 \ge 0$$
 ✓

Definition

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

c

▶
$$1-1 > 0$$
 ✓

$$\overline{m} - y_a + x_a - y_b \ge 0$$

Definition

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

▶
$$1 - 1 + 0 - 0 \ge 0$$
 ✓

a

 x_a

 y_a

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

▶
$$1-1 > 0$$
 ✓

▶
$$1 - 1 + 0 - 0 \ge 0$$
 ✓

$$\overline{m} - y_a + x_a - y_c \ge 0$$

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

▶
$$1-1 > 0$$
 ✓

$$1 - 1 + 0 - 0 \ge 0$$

$$1 - 1 + 0 - 0 \ge 0$$

Definition

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

|c|

▶
$$1-1 > 0$$
 ✓

▶
$$1 - 1 + 0 - 0 \ge 0$$
 ✓

▶
$$1 - 1 + 0 - 0 \ge 0$$
 ✓

$$\overline{m} - y_a + x_a - y_b + x_b - y_d \ge 0$$

Definition

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

|c|

▶
$$1-1 > 0$$
 ✓

▶
$$1 - 1 + 0 - 0 \ge 0$$
 ✓

▶
$$1 - 1 + 0 - 0 \ge 0$$
 ✓

$$1 - 1 + 0 - 0 + 1 - 0 > 0$$

$$x_a \bigcirc y_a$$
 p

Definition

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

▶
$$1-1 > 0$$
 ✓

▶
$$1 - 1 + 0 - 0 \ge 0$$
 ✓

▶
$$1 - 1 + 0 - 0 \ge 0$$
 ✓

$$1 - 1 + 0 - 0 + 1 - 0 > 0$$

$$\overline{m} - y_a + x_a - y_c + x_c - y_d \ge 0$$

Definition

 $\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$

▶
$$1-1 \ge 0$$
 ✓

▶
$$1 - 1 + 0 - 0 \ge 0$$
 ✓

▶
$$1 - 1 + 0 - 0 \ge 0$$
 ✓

$$1 - 1 + 0 - 0 + 1 - 0 > 0$$

$$1 - 1 + 0 - 0 + 0 - 0 > 0$$

Outline

Preliminaries

Prefix closed language

Parikh vectors

Arc labels

Language-based theory of regions

Place validness

Decision variables

Definition

ILP Miner

Place expressiveness

ILP Formulation

Challenges

Performance

Noise

Approach

Questions & Discussion

/ Department of Mathematics and Computer Science

Place expressivenes

$$\mathcal{L}_r = \{ \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

Place expressivenes

$$\mathcal{L}_r = \{ \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

7

d

c

Place expressivenes

$$\begin{array}{c}
\bullet \\
p_1
\end{array}$$

d

▶
$$\overline{m} = 1, y_a = 1$$
 ✓

Place expressivenes

$$\overline{m} = 0, x_a = 1, y_b = 1, y_c = 1 \checkmark$$

d

Place expressivenes

 $\mathcal{L}_r = \{ \langle a, b, d \rangle, \langle a, c, d \rangle \}$

 $\overline{m} = 0, x_b = 1, x_c = 1, y_d = 1$

Place expressivenes

 $\mathcal{L}_r = \{ \langle a, b, d \rangle, \langle a, c, d \rangle \}$

 $\overline{m} = 0, x_d = 1 \checkmark$

a

Place expressivenes

 $\overline{m} = 0, x_a = 1, y_b = 1, y_c = 1$

Place expressivenes

 $\mathcal{L}_r = \{ \langle a, b, d \rangle, \langle a, c, d \rangle \}$

$$\overline{m} = 0, x_a = 1, y_b = 1 \checkmark$$

Place expressivenes

 $\mathcal{L}_r = \{ \langle a, \mathbf{b}, \mathbf{c}, d \rangle, \langle a, \mathbf{c}, \mathbf{b}, d \rangle \}$

 $\overline{m} = 0, x_a = 1, y_b = 1, y_c = 1$?

Place expressivenes

 $\mathcal{L}_r = \{ \langle a, \mathbf{b}, \mathbf{c}, d \rangle, \langle a, \mathbf{c}, \mathbf{b}, d \rangle \}$

- $\overline{m} = 0, x_a = 1, y_b = 1, y_c = 1$?
- $\langle a, b, c \rangle \to \overline{m} y_a + x_a y_b + x_b y_c \ge 0$

Place expressivenes

 $\mathcal{L}_r = \{ \langle a, \mathbf{b}, \mathbf{c}, d \rangle, \langle a, \mathbf{c}, \mathbf{b}, d \rangle \}$

- $\overline{m} = 0, x_a = 1, y_b = 1, y_c = 1$?
- $\langle a, b, c \rangle \to \overline{m} y_a + x_a y_b + x_b y_c \ge 0$
- $\langle a, b, c \rangle \to 0 0 + 1 1 + 0 1 \ge 0$

Place expressivenes

 $\mathcal{L}_r = \{ \langle a, \mathbf{b}, \mathbf{c}, d \rangle, \langle a, \mathbf{c}, \mathbf{b}, d \rangle \}$

- $\overline{m} = 0, x_a = 1, y_b = 1, y_c = 1$?
- $\langle a, b, c \rangle \to \overline{m} y_a + x_a y_b + x_b y_c \ge 0$
- $\langle a, b, c \rangle \to 0 0 + 1 1 + 0 1 \ge 0 \ X$

Place expressivenes

 $\mathcal{L}_r = \{ \langle a, \mathbf{b}, \mathbf{c}, d \rangle, \langle a, \mathbf{c}, \mathbf{b}, d \rangle \}$

 $\overline{m} = 0, x_a = 1, y_b = 1 \checkmark$

Place expressivenes

VS.

Place expressiveness

VS.

Place expressiveness

Minimize:

Maximize:

ILP Formulation

• M, M' are matrices of size $|\mathcal{L}_p \setminus \{\epsilon\}| \times |\mathcal{A}|$

- ▶ M, M' are matrices of size $|\mathcal{L}_p \setminus \{\epsilon\}| \times |\mathcal{A}|$
- $M(w,l) = \overrightarrow{w}(l), M'(w,l) = \overrightarrow{w}'(l)$

- ▶ M, M' are matrices of size $|\mathcal{L}_p \setminus \{\epsilon\}| \times |\mathcal{A}|$
- $M(w,l) = \overrightarrow{w}(l), M'(w,l) = \overrightarrow{w}'(l)$
- $\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$

- ▶ M, M' are matrices of size $|\mathcal{L}_p \setminus \{\epsilon\}| \times |\mathcal{A}|$
- $M(w,l) = \overrightarrow{w}(l), M'(w,l) = \overrightarrow{w}'(l)$
- $\mathcal{L}_p = \{\epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$

$$M = \begin{cases} \langle a \rangle & a & b & c & d \\ \langle a, b \rangle & 1 & 0 & 0 & 0 \\ \langle a, b \rangle & 1 & 1 & 0 & 0 \\ \langle a, b, d \rangle & 1 & 1 & 0 & 1 \\ \langle a, c, d \rangle & 1 & 1 & 0 & 1 \end{cases}$$

- ▶ M, M' are matrices of size $|\mathcal{L}_p \setminus \{\epsilon\}| \times |\mathcal{A}|$
- ullet $M(w,l)=\overrightarrow{w}(l)$, $M'(w,l)=\overrightarrow{w}'(l)$
- $\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$

$$M' = \begin{cases} \langle a \rangle & a & b & c & d \\ \langle a, b \rangle & 0 & 0 & 0 \\ \langle a, b \rangle & 1 & 0 & 0 & 0 \\ \langle a, b, d \rangle & 1 & 0 & 0 \\ \langle a, c, d \rangle & 1 & 1 & 0 & 0 \end{cases}$$

$$\overline{m} + \sum_{l \in \mathcal{A}} (\overrightarrow{w'}(l) \cdot \overrightarrow{x}(l) - \overrightarrow{w}(l) \cdot \overrightarrow{y}(l)) \ge 0$$

$$\overline{m} + \sum_{l \in \mathcal{A}} (\overrightarrow{w'}(l) \cdot \overrightarrow{x}(l) - \overrightarrow{w}(l) \cdot \overrightarrow{y}(l)) \ge 0$$

$$=$$

$$\overline{m} + \sum_{l \in \mathcal{A}} (\overrightarrow{w'}(l) \cdot \overrightarrow{x}(l) - \overrightarrow{w}(l) \cdot \overrightarrow{y}(l)) \ge 0$$

$$\overline{m} \cdot \overrightarrow{1} + M' \cdot \overrightarrow{x} - M \cdot \overrightarrow{y} \ge \overrightarrow{0}$$

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

$$\mathcal{L}_r = \{ \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

$$\mathcal{L}_r = \{ \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

•
$$count(a \in \mathcal{L}_p) = count(b \in \mathcal{L}_p) + count(c \in \mathcal{L}_p) + 1$$

$$\begin{array}{ll} \textbf{Minimize} & \overline{m} + \overrightarrow{1}^T \cdot \left(\overline{m} \cdot \overrightarrow{1} + M \cdot (\overrightarrow{x} - \overrightarrow{y}) \right) & \text{Minimal and most expressive regions} \\ \textbf{such that} & \overline{m} \cdot \overrightarrow{1} + M' \cdot \overrightarrow{x} - M \cdot \overrightarrow{y} \geq \overrightarrow{0} & \text{Theory of regions} \\ & \overrightarrow{1}^T \cdot \overrightarrow{x} + \overrightarrow{1}^T \cdot \overrightarrow{y} \geq 1 & \text{Avoid trivial minimal region } (0, \overrightarrow{0}, \overrightarrow{0}) \\ & \overrightarrow{0} \leq \overrightarrow{x} \leq \overrightarrow{1} & \overrightarrow{x} \in \{0, 1\}^{\mathcal{A}} \\ & \overrightarrow{0} \leq \overrightarrow{y} \leq \overrightarrow{1} & \overrightarrow{y} \in \{0, 1\}^{\mathcal{A}} \\ & 0 < \overline{m} < 1 & \overline{m} \in \{0, 1\} \end{array}$$

$$\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$$

- $\mathcal{L}_p = \{ \epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b, d \rangle, \langle a, c, d \rangle \}$
- ightharpoonup a
 ightharpoonup b

	\overline{m}	x_a	x_b	x_c	x_d	y_a	y_b	y_c	y_d			
min:	/ 6	5	2	2	2	-5	-2	-2	-2		\	
$\langle a \rangle$	1	0	0	0	0	-1	0	0	0	\geq	0	
$\langle a,b \rangle$	1	1	0	0	0	-1	-1	0	0	\geq	0	
$\langle a, c \rangle$	1	1	0	0	0	-1	0	-1	0	\geq	0	
$\langle a, b, d \rangle$	1	1	1	0	0	-1	-1	0	-1	\geq	0	
$\langle a, c, d \rangle$	1	1	0	1	0	-1	0	-1	-1	\geq	0	
$\neg(0,\overrightarrow{0},\overrightarrow{0})$	0	1	1	1	1	1	1	1	1	\geq	1	
$a \rightarrow b$	$\int 0$	1	0	0	0	0	1	0_	0,		2 J	
	Elindhoven											

Outline

Preliminaries

Prefix closed language

Parikh vectors

Arc labels

Language-based theory of regions

Place validness

Decision variables

Definition

_

ILP Miner

Place expressiveness

ILP Formulation

Challenges

Performance

Noise

Approach

Questions & Discussion

Performance

Performance

 $ightharpoonup 2 \cdot |\mathcal{A}| + 1$ variables

Performance

- $2 \cdot |\mathcal{A}| + 1$ variables
- $\pm |\mathcal{L}_p|$ constraints

Noise

Approach

Approach

Approach

Technische Universiteit

Outline

Preliminaries

Prefix closed language

Parikh vectors

Arc labels

Language-based theory of regions

Place validness

Decision variables

Decision variables

II P Miner

Place expressiveness

ILP Formulation

Challenges

Performance

Moico

Annroach

Questions & Discussion

/ Department of Mathematics and Computer Science

Questions & Discussions

