Block Layout

For (accepting) Petri nets

Eric Verbeek
Block Layout

For (accepting) Petri nets

Eric Verbeek
A well-known example
Block Layout
Overview

➢ Reduction (of well-formed free-choice nets)
 • Application
 • Sound free-choice workflow nets
 • Any workflow net
 • Demo
 • Discussions
 • Conclusions
Abstraction rule

Before

No arcs from A, B, or C to p or q

After
Transition (Place) rule

Before

After

X linearly dependent on A and B
Reduction facts

- Can reduce a well-formed free-choice Petri net into a basic Petri net:
 - One transition
 - One place
 - Two arcs back and forth
- Sound and complete
Overview

✓ Reduction (of well-formed free-choice nets)

➢ Application
 ➢ Sound free-choice workflow nets
 • Any workflow net

• Demo
• Discussions
• Conclusions
Sound free-choice workflow nets

After short-circuiting:

- Live and bounded in initial marking, hence well-formed
- Reduction rules can be successfully applied
- Short-circuiting transition is not reduced
- Workflow net is reduced into a single place
- Which we can lay out easily:
Blocks

Properties
• Rectangular
• Position
• Dimension
 • Width
 • Upper and lower height

Types
• Elementary blocks
 • Node block
• Composite (hierarchical) blocks
 • Horizontal block
 • Vertical block
Why upper and lower height?
Two-step layout approach (1)

Bottom-up: Creating blocks

- For every node in the net, create a node block containing its initial dimension
- Reduce workflow net
- For every node in the net, maintain a current block
Two-step layout approach (2)

Top-down: Fixing positions

- Fix position (0, 0) for block of remaining node
- Recursively, fix position of subblocks
- Transfer position of every node block to the corresponding node
Node block

- Contains position and dimension of a single node
- Initially, every node corresponds to a node block with proper dimension and unknown position
- Finally, all positions of the node blocks will be set.
Horizontal block

- Three subblocks
 - Green, yellow, and red rectangles
- Spacers
 - White rounded rectangles
 - hSpace has adjustable (manual) width
 - hFill has variable (automatic) width
 - vOffsets used to align subblocks
Horizontal block: Why hFill?
Horizontal block: Abstraction rule

HORIZONTAL BLOCK
use hFills to widen block if needed
Vertical block

- Contains two subblocks
- vSpace has adjustable (manual) height
- Three settings for heights
 - Center
 - Top
 - Bottom
- Blocks widths are aligned
 - Using hFill
- Self-loops
Vertical block: Transition (Place) rule
Overview

✓ Reduction (of well-formed free-choice nets)

➤ Application
 ✓ Sound free-choice workflow nets
 ➤ Any workflow net

• Demo
• Discussions
• Conclusions
Any workflow net (1)

- Industrial/real life problem
 - Any workflow net
- Solution
 - Layout for any workflow net
- Mathematical model
 - Sound free-choice workflow net
- Solution mathematical problem
 - Layout for sound free-choice workflow net
Any workflow net (2)

Mathematical modeling
- Create state machine workflow net with similar structure
 - Basic idea by Boudewijn
 - Replace
 - transitions by places and
 - arcs by transitions (with two arcs)
 - Is sound and free-choice

Translate
- Copy obtained positions to original workflow net
- Use transitions to obtain arc points
State machine workflow net

Transitions are a bit small here…
Reverse Transition rule
Alternative Place rule
Block hierarchy for the example
Layout for the original workflow net

Block Hierarchy

Layout
Overview

✓ Reduction (of well-formed free-choice nets)
✓ Application
 ✓ Sound free-choice workflow nets
 ✓ Any workflow net

➢ Demo
 • Discussions
 • Conclusions
a32

Dot
a32

Block Layout
Inductive Miner (on Contest 2016 training log 1)
Inductive Miner
(on Contest 2016 training log 1)

Block Layout
BPM 2013 data set, model prAm6 (Jorge Munoz)
BPM 2013 data set, model prAm6 (Jorge Munoz)

Block Layout
1R420,
model_04

Dot
1R420, model_04

Dot, top-down
Overview

✓ Reduction (of well-formed free-choice nets)
✓ Application
 ✓ Sound free-choice workflow nets
 ✓ Any workflow net
✓ Demo
➢ Discussions
• Conclusions
Abstraction rule

Easy
Abstraction rule

Hard

Prefer the place?
(Reverse) Transition rule

Easy
(Reverse) Transition rule

Hard

Prefer max height, then max width?

Multiple dependent transitions
Alternative place rule

Easy

Identical pre-pre places and post-post places
Alternative place rule

Hard
(H removed)

Non-identical pre-pre places or post-post places
What to do if nothing is easy?
Vertical sort

- Loop-backs sorted at the bottom
- Based on current vertical sort of neighbors
Overview

- Reduction (of well-formed free-choice nets)
- Application
 - Sound free-choice workflow nets
 - Any workflow net
- Demo
- Discussions
- Conclusions
Conclusions

Pro
- No layers needed
- No need to revert some arcs
- Nice layouts for nicely structured nets
 - Not yet clear what “nicely structured” means here… “easy” does it…
 - Inductive Miner results typically qualify
- Almost deterministic (ILP solver is not)

Con
- No checking for crossings
 - Arcs may even overlap with nodes
- Not-so-nice layouts for not-so-nicely structured nets
 - Portal arcs?
Questions?
Priorities

Rule

• Abstraction
• Transition
• Place

• 0.99 / |preset transitions|
• 1.00 / |dependent transitions|
• 0.98 × (|∩| / |∪|)