Inferring Unobserved Events in Systems With Shared Resources and Queues

Fahland, D., Denisov, V., & van der Aalst, W. M. P. (2021). Inferring Unobserved Events in Systems With Shared Resources and Queues. Fundamenta Informaticae, 183(3-4), 203-242. https://doi.org/10.3233/FI-2021-2087 Abstract To identify the causes of performance problems or to predict process behavior, it is essential to have correct and complete event data. This is particularly important for Read More …

Visualizing Token Flows Using Interactive Performance Spectra

van der Aalst, W. M. P., Tacke Genannt Unterberg, D., Denisov, V., & Fahland, D. (2020). Visualizing Token Flows Using Interactive Performance Spectra. In R. Janicki, N. Sidorova, & T. Chatain (Eds.), Application and Theory of Petri Nets and Concurrency – 41st International Conference, PETRI NETS 2020, Proceedings (pp. 369-380). (Lecture Notes in Computer Science Read More …

Repairing Event Logs with Missing Events to Support Performance Analysis of Systems with Shared Resources

Denisov, V., Fahland, D., & van der Aalst, W. M. P. (2020). Repairing Event Logs with Missing Events to Support Performance Analysis of Systems with Shared Resources. In R. Janicki, N. Sidorova, & T. Chatain (Eds.), Application and Theory of Petri Nets and Concurrency – 41st International Conference, PETRI NETS 2020, Proceedings (pp. 239-259). (Lecture Notes Read More …

Multi-dimensional performance analysis and monitoring using integrated performance spectra

Denisov, V., Fahland, D., & Van Der Aalst, W. M. P. (2020). Multi-dimensional performance analysis and monitoring using integrated performance spectra. In C. Di Ciccio (Ed.), Proceedings of the ICPM Doctoral Consortium and Tool Demonstration Track 2020 co-located with the 2nd International Conference on Process Mining (ICPM 2020): Padua, Italy, October 4-9, 2020 (pp. 27-30). Read More …

Detecting system-level behavior leading to dynamic bottlenecks

Toosinezhad, Z., Fahland, D., Köroglu, Ö., & Van Der Aalst, W. M. P. (2020). Detecting system-level behavior leading to dynamic bottlenecks. In B. van Dongen, M. Montali, & M. T. Wynn (Eds.), Proceedings – 2020 2nd International Conference on Process Mining, ICPM 2020 (pp. 17-24). [9230102] Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/ICPM49681.2020.00014 Abstract Dynamic Read More …

Process Mining and Process Prediction in Logistics (Vanderlande)

Summary In the context of the “Process Mining in Logistics” research project between Vanderlande Industries, we are offering multiple Master projects on process mining on event data of large-scale material handling systems. The fundamental challenges addressed are size (logistics processes are a factor 10-100 larger than business processes), reliable performance analysis and process prediction. We Read More …

Predictive performance monitoring of material handling systems using the performance spectrum

Denisov, V., Fahland, D., & van der Aalst, W. M. P. (2019). Predictive performance monitoring of material handling systems using the performance spectrum. In Proceedings – 2019 International Conference on Process Mining, ICPM 2019 (pp. 137-144). [8786068] Piscataway: Institute of Electrical and Electronics Engineers. DOI: 10.1109/ICPM.2019.00029 Abstract Predictive performance analysis is crucial for supporting operational Read More …

Boudewijn van Dongen

Boudewijn’s research focusses on conformance checking. Conformance checking is considered to be anything where observed behavior, needs to be related to already modeled behavior. Conformance checking is embedded in the larger contexts of Business Process Management and Process Mining. Boudewijn aims to develop techniques and tools to analyze databases and logs of large-scale information systems Read More …

The performance spectrum miner : visual analytics for fine-grained performance analysis of processes

Denisov, Vadim, Belkina, Elena, Fahland, Dirk & van der Aalst, Wil M.P. (2018). The performance spectrum miner : visual analytics for fine-grained performance analysis of processes. CEUR Workshop Proceedings, 2196, 96-100. Abstract We present the Performance Spectrum Miner, a ProM plugin, which implements a new technique for fine-grained performance analysis of processes. The technique uses Read More …

Unbiased, fine-grained description of processes performance from event data

Denisov, V.V., Fahland, D. & van der Aalst, W.M.P. (2018). Unbiased, fine-grained description of processes performance from event data. Business Process Management – 16th International Conference, BPM 2018, Sydney, NSW, Australia, September 9-14, 2018, Proceedings. (pp. 139-157). (Lecture Notes in Computer Science, No. 11080). Springer. Abstract Performance is central to processes management and event data Read More …

Dirk Fahland

Dirk is Associate Professor (UHD) in the PA group. He completed his PhD with summa cum laude at Humboldt-Univeristät zu Berlin and Eindhoven University of Technology in 2010. His research interests include distributed processes and systems built from distributed components for which he investigates modeling systems (using process modeling languages, Petri nets, or scenario-based techniques), Read More …

Process Mining in Logistics

Process Mining in Logistics is a joint project of the Data Science Center Eindhoven and Vanderlande industries. Description Logistics processes are notoriously difficult to design, analyze, and to improve. Where classical processes are scoped around the processing of information associated to a specific unique case, logistics deals with physical objects that are grouped and processed Read More …

Wil van der Aalst

Prof.dr.ir. Wil van der Aalst is a full professor of the Process and Data Science (PADS) group at the RWTH in Aachen (Germany) and a part-time professor in the PA group. His personal research interests include process mining, business process management, workflow management, Petri nets, process modeling, and process analysis. Position: HGL Room: MF 7.064 Read More …