Mining process model descriptions of daily life through event abstraction

Tax, N., Sidorova, N., Haakma, R., & van der Aalst, W. M. P. (2018). Mining process model descriptions of daily life through event abstraction. In S. Kapoor, R. Bhatia, & Y. Bi (Eds.), Intelligent Systems and Applications: Extended and Selected Results from the SAI Intelligent Systems Conference (IntelliSys) 2016 (pp. 83-104). (Studies in Computational Intelligence; Read More …

Event abstraction for process mining using supervised learning techniques

Tax, N., Sidorova, N., Haakma, R., & van der Aalst, W. M. P. (2018). Event abstraction for process mining using supervised learning techniques. In Y. Bi, S. Kapoor, & R. Bhatia (Eds.), Proceedings of the SAI Intelligent Systems Conference (IntelliSys 2016), 21-22 September 2016, London, United Kingdom (pp. 251-269). (Lecture Notes in Networks and Systems; Read More …

Evaluating conformance measures in process mining using conformance propositions

Syring, A. F., Tax, N., & van der Aalst, W. M. P. (2019). Evaluating conformance measures in process mining using conformance propositions. In M. Koutny, L. Pomello, & L. M. Kristensen (Eds.), Transactions on Petri Nets and Other Models of Concurrency XIV (pp. 192-221). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Read More …

Mining local process models and their correlations

Genga, L., Tax, N., & Zannone, N. (2019). Mining local process models and their correlations. In M. van Keulen, P. Ceravolo, & K. Stoffel (Eds.), Data-Driven Process Discovery and Analysis – 7th IFIP WG 2.6 International Symposium, SIMPDA 2017, Revised Selected Papers (pp. 65-88). (Lecture Notes in Business Information Processing; Vol. 340). Cham: Springer. DOI: Read More …

Mining local process models with constraints efficiently: applications to the analysis of smart home data

Tax, N., Sidorova, N., Haakma, R., & van der Aalst, W. M. P. (2018). Mining local process models with constraints efficiently: applications to the analysis of smart home data. In Proceedings of the 14th International Conference on Intelligent Environments (IE) (pp. 56-63). [8595032] Piscataway: Institute of Electrical and Electronics Engineers. DOI: 10.1109/IE.2018.00016 Abstract Sequential pattern Read More …

Generating time-based label refinements to discover more precise process models

Tax, N., Alasgarov, E. E., Sidorova, N., Haakma, R., & van der Aalst, W. M. P. (2019). Generating time-based label refinements to discover more precise process models. Journal of Ambient Intelligence and Smart Environments, 11(2), 165-182. DOI: 10.3233/AIS-190519 Abstract Process mining is a research field focused on the analysis of event data with the aim Read More …

Bart Hompes

Bart is an enthusiastic, fast-learning team-player eager to learn and develop new technologies. Bart’s broad interests lie in the fields where business meets technology, such as BPM, BI and BIS. Bart likes to work in international, research-oriented environments with relations to practical applications and implementation. In his spare time Bart likes to ride my motorcycle Read More …

Boudewijn van Dongen

Boudewijn’s research focusses on conformance checking. Conformance checking is considered to be anything where observed behavior, needs to be related to already modeled behavior. Conformance checking is embedded in the larger contexts of Business Process Management and Process Mining. Boudewijn aims to develop techniques and tools to analyze databases and logs of large-scale information systems Read More …

Alarm-based prescriptive process monitoring

Teinemaa, Irene, Tax, Niek, de Leoni, Massimiliano, Dumas, Marlon & Maggi, Fabrizio Maria (2018). Alarm-based prescriptive process monitoring. In Ingo Weber, Jan vom Brocke, Marco Montali & Mathias Weske (Eds.), Business Process Management Forum – BPM Forum 2018, Proceedings (pp. 91-107). (Lecture Notes in Business Information Processing, No. 329). Springer. Abstract Predictive process monitoring is Read More …

Indulpet miner : combining discovery algorithms

Leemans, Sander J.J., Tax, Niek & ter Hofstede, Arthur H.M. (2018). Indulpet miner : combining discovery algorithms. In Dumitru Roman, Henderik A. Proper, Robert Meersman, Hervé Panetto, Christophe Debruyne & Claudio Agostino Ardagna (Eds.), On the Move to Meaningful Internet Systems. OTM 2018 Conferences – Confederated International Conferences (pp. 97-115). (Lecture Notes in Computer Science Read More …

Lifecycle-Based Process Performance Analysis

Hompes, Bart F.A. & van der Aalst, Wil M.P. (2018). Lifecycle-Based Process Performance Analysis. In Dumitru Roman, Henderik A. Proper, Robert Meersman, Hervé Panetto, Christophe Debruyne & Claudio Agostino Ardagna (Eds.), On the Move to Meaningful Internet Systems. OTM 2018 Conferences – Confederated International Conferences (pp. 336-353). (Lecture Notes in Computer Science (including subseries Lecture Read More …

Fast conformance analysis based on activity log abstraction

Dixit, P.M. & van der Aalst, W.M.P. (2018). Fast conformance analysis based on activity log abstraction. 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference, Proceedings (pp. 135-144). Piscataway. Abstract Process mining techniques focus on bridging the gap between activity logs and business process management. Process discovery is a sub-field of process mining which uses Read More …

Incremental computation of synthesis rules for free-choice Petri nets

Dixit, Prabhakar M., Verbeek, H.M.W. & van der Aalst, Wil M.P. (2018). Incremental computation of synthesis rules for free-choice Petri nets. In Peter Csaba Ölveczky & Kyungmin Bae (Eds.), Formal Aspects of Component Software – 15th International Conference, FACS 2018, Proceedings (pp. 97-117). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence Read More …

Interactive data-driven process model construction

Dixit, P. M., Verbeek, H.M.W., Buijs, J. C.A.M. & van der Aalst, W. M.P. (2018). Interactive data-driven process model construction. In Xiaoyong Du, Guoliang Li, Zhanhuai Li, Juan C. Trujillo, Tok Wang Ling, Karen C. Davis & Mong Li Lee (Eds.), Conceptual Modeling – 37th International Conference, ER 2018, Proceedings (pp. 251-265). (Lecture Notes in Read More …

ProDiGy : Human-in-the-loop process discovery

Dixit, P.M., Buijs, J.C.A.M. & van der Aalst, W.M.P. (2018). ProDiGy : Human-in-the-loop process discovery. 2018 12th International Conference on Research Challenges in Information Science, RCIS 2018 (pp. 1-12). Piscataway: IEEE Computer Society. Abstract Process mining is a discipline that combines the two worlds of business process management and data mining. The central component of Read More …

Fast incremental conformance analysis for interactive process discovery

Dixit, P.M., Buijs, J.C.A.M., Verbeek, H.M.W., & van der Aalst, W.M.P. (2018). Fast incremental conformance analysis for interactive process discovery. In W. Abramowicz & A. Paschke (Eds.), Business Information Systems – 21st International Conference, BIS 2018, Proceedings (pp. 163-175). (Lecture Notes in Business Information Processing, No. 320). Springer. Abstract Interactive process discovery allows users to Read More …

Local process model discovery : bringing petri nets to the pattern mining world

Tax, Niek, Sidorova, Natalia, van der Aalst, Wil M.P. & Haakma, Reinder (2018). Local process model discovery : bringing petri nets to the pattern mining world. In V. Khohamenko & O.H. Roux (Eds.), Application and Theory of Petri Nets and Concurrency (pp. 374-384). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence Read More …

An experimental evaluation of the generalizing capabilities of process discovery techniques and black-box sequence models

Tax, N., van Zelst, S.J. & Teinemaa, I. (2018). An experimental evaluation of the generalizing capabilities of process discovery techniques and black-box sequence models. In Palash Bera, Jens Gulden, Iris Reinhartz-Berger, Wided Guédria, Sérgio Guerreiro & Rainer Schmidt (Eds.), Enterprise, Business-Process and Information Systems Modeling (pp. 165-180). (Lecture Notes in Business Information Processing). Dordrecht: Springer Read More …

Detection and interactive repair of event ordering imperfection in process logs

Dixit, Prabhakar M., Suriadi, Suriadi, Andrews, Robert, Wynn, Moe T., ter Hofstede, Arthur H.M., Buijs, Joos C.A.M. & van der Aalst, Wil M.P. (2018). Detection and interactive repair of event ordering imperfection in process logs. Advanced Information Systems Engineering – 30th International Conference, CAiSE 2018, Proceedings (pp. 274-290). (Lecture Notes in Computer Science (including subseries Read More …

Interest-driven discovery of local process models

Tax, Niek, Dalmas, Benjamin, Sidorova, Natalia, van der Aalst, Wil M.P. & Norre, Sylvie (2018). Interest-driven discovery of local process models. Information Systems, 77, 105-117. Abstract Local Process Models (LPM) describe structured fragments of process behavior occurring in the context of less structured business processes. Traditional LPM discovery aims to generate a collection of process Read More …

The imprecisions of precision measures in process mining

Tax, N., Lu, X., Sidorova, N., Fahland, D. & van der Aalst, W.M.P. (2018). The imprecisions of precision measures in process mining. Information Processing Letters, 135, 1-8. Abstract In process mining, precision measures are used to quantify how much a process model overapproximates the behavior seen in an event log. Although several measures have been Read More …

Discovering more precise process models from event logs by filtering out chaotic activities

Tax, N., Sidorova, N. & van der Aalst, W.M.P. (2019). Discovering more precise process models from event logs by filtering out chaotic activities. Journal of Intelligent Information Systems, 52(1), 107-139. DOI: 10.1007/s10844-018-0507-6 Abstract Process Discovery is concerned with the automatic generation of a process model that describes a business process from execution data of that Read More …

Philips Flagship

Description The Data Science Centre Eindhoven (DSC/e) is TU/e’s response to the growing volume and importance of data and the need for data & process scientists (http://www.tue.nl/dsce/). The DSC/e has recently started a long-term strategic cooperation with Philips Research Eindhoven on three topics: data science, health and lighting. As a first concrete action, 70 PhD Read More …

Joos Buijs

Joos Buijs’ current research interests include Process mining in healthcare and Learning analytics. Next to these research topics Joos is also involved in MOOC creation. Related to the learning analytics of course, we also create MOOCs on the topic of process mining. There is the Coursera MOOC “Process Mining: Data Science in Action”. And on Read More …

Wil van der Aalst

Prof.dr.ir. Wil van der Aalst is a full professor of the Process and Data Science (PADS) group at the RWTH in Aachen (Germany) and a part-time professor in the PA group. His personal research interests include process mining, business process management, workflow management, Petri nets, process modeling, and process analysis. Position: HGL Room: MF 7.064 Read More …

Natalia Sidorova

Dr. Natalia Sidorova is assistant professor at the PA group. She actively works on topics related to process modeling and verification. The application domains include business processes and distributed systems. She has published more than 70 conference and journal papers. She is active in the Health and Wellbeing Action Line of EIT ICT Labs, taking Read More …

Niek Tax

Niek is a PhD student within the PA group where his main research is in the area of process mining. More concretely, his research interests include seasonality detection, deviation detection, predictions and recommendations based on process mining techniques. Position: PhD Student Room: MF 7.108 Tel (internal): 8965 Links: Personal home page Google scholar page Scopus Read More …

Eric Verbeek

Eric is the scientific programmer in the PA group. As such, he is the custodian of the process mining framework ProM. In you want access to the ProM repository, or have any questions related to ProM and its development, ask Eric. Recently, he has been working on a decomposition framework for both process discovery as Read More …