Unsupervised Anomaly Detection of Prefixes in Event Streams Using Online Autoencoders

Musaj, Z., & Hassani, M. (2025). Unsupervised Anomaly Detection of Prefixes in Event Streams Using Online Autoencoders. In M. Comuzzi, D. Grigori, M. Sellami, & Z. Zhou (Eds.), Cooperative Information System: 30th International Conference, CoopIS 2024, Porto, Portugal, November 19–21, 2024, Proceedings (pp. 93-110). Springer. https://doi.org/10.1007/978-3-031-81375-7_6 Abstract In this work we address the problem of Read More …

Autoencoder-Based Detection of Delays, Handovers and Workloads over High-Level Events

Verwijst, I., Mennens, R., Scheepens, R., & Hassani, M. (2025). Autoencoder-Based Detection of Delays, Handovers and Workloads over High-Level Events. In M. Comuzzi, D. Grigori, M. Sellami, & Z. Zhou (Eds.), Cooperative Information Systems: 30th International Conference, CoopIS 2024, Porto, Portugal, November 19–21, 2024, Proceedings (pp. 111-128). (Lecture Notes in Computer Science (LNCS); Vol. 15506). Read More …

Handling Catastrophic Forgetting: Online Continual Learning for Next Activity Prediction

Verbeek, T., & Hassani, M. (2025). Handling Catastrophic Forgetting: Online Continual Learning for Next Activity Prediction. In M. Comuzzi, D. Grigori, M. Sellami, & Z. Zhou (Eds.), Cooperative Information Systems – 30th International Conference, CoopIS 2024, Proceedings: 30th International Conference, CoopIS 2024, Porto, Portugal, November 19–21, 2024, Proceedings (pp. 225-242). (Lecture Notes in Computer Science Read More …

Outlier-Weighted Traffic Flow Prediction Using Online Autoencoders

Choudhary, H., Alkhodre, A. B., & Hassani, M. (2025). Outlier-Weighted Traffic Flow Prediction Using Online Autoencoders. In R. Chbeir, S. Ilarri, Y. Manolopoulos, P. Z. Revesz, J. Bernardino, & C. K. Leung (Eds.), Database Engineered Applications: 28th International Symposium, IDEAS 2024, Bayonne, France, August 26–29, 2024, Proceedings (pp. 203-219). (Lecture Notes in Computer Science (LNCS); Read More …

On Inferring a Meaningful Similarity Metric for Customer Behaviour

van den Berg, S., & Hassani, M. (2021). On Inferring a Meaningful Similarity Metric for Customer Behaviour. In Y. Dong, N. Kourtellis, B. Hammer, & J. A. Lozano (Eds.), Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track – European Conference, ECML PKDD 2021, Proceedings (pp. 234-250). (Lecture Notes in Computer Science (including Read More …

Uncovering Patterns for Local Explanations in Outcome-based Predictive Process Monitoring

Buliga, A., Vazifehdoostirani, M., Genga, L., Lu, X., Dijkman, R. M., Di Francescomarino, C., Ghidini, C., & Reijers, H. A. (2024). Uncovering Patterns for Local Explanations in Outcome-based Predictive Process Monitoring. In A. Marrella, M. Resinas, M. Jans, & M. Rosemann (editors), Business Process Management: 22nd International Conference, BPM 2024, Krakow, Poland, September 1–6, 2024, Read More …

Decomposing Process Performance based on Actor Behavior

Klijn, E. L., Tentina, I., Fahland, D., & Mannhardt, F. (2024). Decomposing Process Performance based on Actor Behavior. In X. Lu, L. Pufahl, & M. Song (editors), 2024 6th International Conference on Process Mining, ICPM 2024 (blz. 129-136). Artikel 10680657 Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/ICPM63005.2024.10680657 Abstract Process performance analysis based on event logs Read More …

Discovery of Object-Centric Declarative Models

Christfort, A. K. F., Rivkin, A., Fahland, D., Hildebrandt, T. T., & Slaats, T. (2024). Discovery of Object-Centric Declarative Models. In X. Lu, L. Pufahl, & M. Song (editors), 2024 6th International Conference on Process Mining, ICPM 2024 (blz. 121-128). Artikel 10680680 Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/ICPM63005.2024.10680674 Abstract Object-centric process mining views processes Read More …

Explainable Object-Centric Anomaly Detection: the Role of Domain Knowledge

Berti, A., Jessen, U., van der Aalst, W. M. P., & Fahland, D. (2024). Explainable Object-Centric Anomaly Detection: the Role of Domain Knowledge. In BPM-D 2024: Proceedings of the Best Dissertation Award, Doctoral Consortium, and Demonstration & Resources Forum at BPM 2024 co-located with 22nd International Conference on Business Process Management (BPM 2024) Krakow, Poland, Read More …

Autoencoder-based Continual Outlier Correlation Detection for Real-Time Traffic Flow Prediction

Choudhary, H., & Hassani, M. (2024). Autoencoder-based Continual Outlier Correlation Detection for Real-Time Traffic Flow Prediction. In 39th Annual ACM Symposium on Applied Computing, SAC 2024 (pp. 218-220) https://doi.org/10.1145/3605098.3636162 Abstract In urban landscapes, traffic congestion, often identified by outlier events like accidents or constructions, poses a significant challenge. These outliers result in abrupt traffic fluctuations, Read More …

Online Next Activity Prediction Under Concept Drifts

Kosciuszek, T., & Hassani, M. (2024). Online Next Activity Prediction Under Concept Drifts. In J. P. A. Almeida, C. Di Ciccio, & C. Kalloniatis (Eds.), Advanced Information Systems Engineering Workshops: CAiSE 2024 International Workshops, Limassol, Cyprus, June 3–7, 2024, Proceedings (pp. 335-346). (Lecture Notes in Business Information Processing; Vol. 521). https://doi.org/10.1007/978-3-031-61003-5_28 Abstract Existing research in Read More …

Clinical Event Knowledge Graphs: Enriching Healthcare Event Data with Entities and Clinical Concepts – Research Paper

Aali, M. N., Mannhardt, F., & Toussaint, P. J. (2024). Clinical Event Knowledge Graphs: Enriching Healthcare Event Data with Entities and Clinical Concepts – Research Paper. In J. De Smedt, & P. Soffer (Eds.), Process Mining Workshops – ICPM 2023 International Workshops, 2023, Revised Selected Papers (pp. 296-308). (Lecture Notes in Business Information Processing; Vol. Read More …

Customer journeys and process mining – challenges and opportunities

Halvorsrud, R., Mannhardt, F., Prillard, O., & Boletsis, C. (2024). Customer journeys and process mining – challenges and opportunities. In International Conference on Exploring Service Science (IESS 2.4) (Vol. 62, pp. 05002). (ITM Web of Conferences). https://doi.org/10.1051/itmconf/20246205002

Experience-Based Resource Allocation for Remaining Time Optimization

Padella, A., Mannhardt, F., Vinci, F., De Leoni, M., & Vanderfeesten, I. (2024). Experience-Based Resource Allocation for Remaining Time Optimization. In A. Marrella, M. Resinas, M. Jans, & M. Rosemann (Eds.), Business Process Management: 22nd International Conference, BPM 2024, Krakow, Poland, September 1–6, 2024, Proceedings (pp. 345-362). Article Chapter 20 (Lecture Notes in Computer Science (LNCS); Read More …

The Quest for the Comprehensive Customer Journey – A Case Study from a C2C Marketplace

Mannhardt, F., Halvorsrud, R., Meironas, O., & Brurok, L. (2024). The Quest for the Comprehensive Customer Journey – A Case Study from a C2C Marketplace. In Business Process Management: Blockchain, Robotic Process Automation, Central and Eastern European, Educators and Industry Forum (Vol. 527, pp. 451-461). Article Chapter 33 (Lecture Notes in Business Information Processing; Vol. 527). https://doi.org/10.1007/978-3-031-70445-1_33

Generating Event Logs with CPN IDE

Verbeek, E., & Fahland, D. (2023). Generating Event Logs with CPN IDE. In Doctoral Consortium and Demo Track 2023 at the International Conference on Process Mining, ICPM-DCDT 2023 (CEUR Workshop Proceedings; Vol. 3648). Abstract This extended abstract introduces the event log generation facility of CPN IDE. CPN IDE has replaced CPN Tools as a tool Read More …

Online Prediction Threshold Optimization Under Semi-deferred Labelling

Spenrath, Y., Hassani, M., & van Dongen, B. F. (2024). Online Prediction Threshold Optimization Under Semi-deferred Labelling. In T. Palpanas, & H. V. Jagadish (Eds.), 8th International workshop on Data Analytics solutions for Real-LIfe APplications (DARLI-AP) (CEUR Workshop Proceedings; Vol. 3651). CEUR-WS.org. https://ceur-ws.org/Vol-3651/ Abstract In supermarket loyalty campaigns, shoppers collect stamps to redeem limited-time luxury Read More …

Multi-Perspective Concept Drift Detection: Including the Actor Perspective

Klijn, E. L., Mannhardt, F., & Fahland, D. (2024). Multi-perspective Concept Drift Detection: Including the Actor Perspective. In G. Guizzardi, F. Santoro, H. Mouratidis, & P. Soffer (Eds.), Advanced Information Systems Engineering – 36th International Conference, CAiSE 2024, Proceedings (pp. 141-157). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Read More …

Event Knowledge Graphs for Auditing: A Case Study

Klijn, E. L., Preuss, D., Imeri, L., Baumann, F., Mannhardt, F., & Fahland, D. (2024). Event Knowledge Graphs for Auditing: A Case Study. In J. De Smedt, & P. Soffer (editors), Process Mining Workshops: ICPM 2023 International Workshops, Rome, Italy, October 23–27, 2023, Revised Selected Papers (blz. 84-97). (Lecture Notes in Business Information Processing (LNBIP); Read More …

Implementing Object-Centric Event Data Models in Event Knowledge Graphs

Swevels, A., Fahland, D., & Montali, M. (2024). Implementing Object-Centric Event Data Models in Event Knowledge Graphs. In J. De Smedt, & P. Soffer (Eds.), Process Mining Workshops – ICPM 2023 International Workshops, 2023, Revised Selected Papers (pp. 431-443). (Lecture Notes in Business Information Processing; Vol. 503 LNBIP). https://doi.org/10.1007/978-3-031-56107-8_33 Abstract Recent advances in object-centric process Read More …

Domain engineering for customer experience management

Benzarti, I., Mili, H., Medeiros de Carvalho, R., & Leshob, A. (2022). Domain engineering for customer experience management. Innovations in Systems and Software Engineering, 18(1), 171-191. https://doi.org/10.1007/s11334-021-00426-2 Abstract Customer experience management (CXM) denotes a set of practices, processes, and tools, that aim at personalizing a customer’s interactions with a company around the customer’s needs and Read More …

An insight to nurse workload: predicting activities in the next shift and analyzing bedside alarms influence

de Carvalho, R. M., Nguyen, H., Heetveld, M., & Luime, J. (2022). An insight to nurse workload: predicting activities in the next shift and analyzing bedside alarms influence. In T. X. Bui (Ed.), Proceedings of the 55th Annual Hawaii International Conference on System Sciences, HICSS 2022 (pp. 4108-4117). IEEE Computer Society. Abstract The effects of Read More …

Predicting Patient Care Acuity: An LSTM Approach for Days-to-day Prediction

Bekelaar, J. W. R., Luime, J. J., & de Carvalho, R. M. (2023). Predicting Patient Care Acuity: An LSTM Approach for Days-to-day Prediction. In M. Montali, A. Senderovich, & M. Weidlich (Eds.), Process Mining Workshops – ICPM 2022 International Workshops, Revised Selected Papers (pp. 378-390). (Lecture Notes in Business Information Processing; Vol. 468 LNBIP). Springer. https://doi.org/10.1007/978-3-031-27815-0_28 Read More …

Action-Evolution Petri Nets: a Framework for Modeling and Solving Dynamic Task Assignment Problems

Lo Bianco, R., Dijkman, R. M., Nuijten, W. P. M., & van Jaarsveld, W. L. (2023). Action-Evolution Petri Nets: a Framework for Modeling and Solving Dynamic Task Assignment Problems. In C. Di Francescomarino, A. Burattin, C. Janiesch, & S. Sadiq (Eds.), Business Process Management: 21st International Conference, BPM 2023, Utrecht, The Netherlands, September 11–15, 2023, Read More …

Combining Deep Reinforcement Learning with Search Heuristics for Solving Multi-Agent Path Finding in Segment-based Layouts

Reijnen, R., Zhang, Y., Nuijten, W. P. M., Senaras, C., & Goldak, M. (2021). Combining Deep Reinforcement Learning with Search Heuristics for Solving Multi-Agent Path Finding in Segment-based Layouts. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI 2020) (pp. 2647-2654). Article 9308584 IEEE Press. https://doi.org/10.1109/SSCI47803.2020.9308584 Abstract A multi-agent path finding (MAPF) problem is concerned Read More …

Data-driven Support of Coaches in Professional Cycling using Race Performance Prediction

Karetnikov, A., Nuijten, W., & Hassani, M. (2021). Data-driven Support of Coaches in Professional Cycling using Race Performance Prediction. In P. Pezarat-Correia, J. Vilas-Boas, & J. Cabri (Eds.), icSPORTS 2021 – Proceedings of the 9th International Conference on Sport Sciences Research and Technology Support (pp. 43-53). SciTePress Digital Library. https://doi.org/10.5220/0010656300003059 Abstract In individual sports, the Read More …

Can we Learn from Outliers? Unsupervised Optimization of Intelligent Vehicle Traffic Management Systems

Mertens, T., & Hassani, M. (2023). Can we Learn from Outliers? Unsupervised Optimization of Intelligent Vehicle Traffic Management Systems. In M.-R. Amini, S. Canu, A. Fischer, T. Guns, P. Kralj Novak, & G. Tsoumakas (Eds.), Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part VI Read More …

Predicting Activities of Interest in the Remainder of Customer Journeys Under Online Settings

Wolters, L., & Hassani, M. (2023). Predicting Activities of Interest in the Remainder of Customer Journeys Under Online Settings. In M. Montali, A. Senderovich, & M. Weidlich (Eds.), Process Mining Workshops – ICPM 2022 International Workshops, Revised Selected Papers (pp. 145-157). (Lecture Notes in Business Information Processing; Vol. 468 LNBIP). https://doi.org/10.1007/978-3-031-27815-0_11 Abstract Customer journey analysis Read More …

PrefixCDD: Effective Online Concept Drift Detection over Event Streams using Prefix Trees.

Huete, J., Qahtan, A. A., & Hassani, M. (2023). PrefixCDD: Effective Online Concept Drift Detection over Event Streams using Prefix Trees. In H. Shahriar, Y. Teranishi, A. Cuzzocrea, M. Sharmin, D. Towey, AKM. J. A. Majumder, H. Kashiwazaki, J.-J. Yang, M. Takemoto, N. Sakib, R. Banno, & S. I. Ahamed (Eds.), COMPSAC (pp. 328-333) https://doi.org/10.1109/COMPSAC57700.2023.00051 Read More …

An Experiment on Transfer Learning for Suffix Prediction on Event Logs

van Luijken, M., Ketykó, I., & Mannhardt, F. (2024). An Experiment on Transfer Learning for Suffix Prediction on Event Logs. In J. De Weerdt, & L. Pufahl (Eds.), Business Process Management Workshops – BPM 2023 International Workshops, Utrecht, The Netherlands, September 11–15, 2023, Revised Selected Papers (pp. 31-43). (Lecture Notes in Business Information Processing; Vol. 492 LNBIP). Springer. Read More …

Inferring Missing Entity Identifiers from Context Using Event Knowledge Graphs

Swevels, A., Dijkman, R. M., & Fahland, D. (2023). Inferring Missing Entity Identifiers from Context Using Event Knowledge Graphs. In C. Di Francescomarino, A. Burattin, C. Janiesch, & S. Sadiq (Eds.), Business Process Management: 21st International Conference, BPM 2023, Utrecht, The Netherlands, September 11–15, 2023, Proceedings (pp. 180-197). (Lecture Notes in Computer Science (LNCS); Vol. Read More …

Detecting Complex Anomalous Behaviors in Business Processes: A Multi-perspective Conformance Checking Approach

Mozafari Mehr, A. S., M. de Carvalho, R., & van Dongen, B. (2023). Detecting Complex Anomalous Behaviors in Business Processes: A Multi-perspective Conformance Checking Approach. In M. Montali, A. Senderovich, & M. Weidlich (Eds.), Process Mining Workshops – ICPM 2022 International Workshops, Revised Selected Papers (pp. 44-56). (Lecture Notes in Business Information Processing; Vol. 468 LNBIP). Read More …

An Association Rule Mining-Based Framework for the Discovery of Anomalous Behavioral Patterns

Mozafari Mehr, A. S., M. de Carvalho, R., & van Dongen, B. (2022). An Association Rule Mining-Based Framework for the Discovery of Anomalous Behavioral Patterns. In W. Chen, L. Yao, T. Cai, S. Pan, T. Shen, & X. Li (Eds.), Advanced Data Mining and Applications – 18th International Conference, ADMA 2022, Proceedings (pp. 397-412). (Lecture Notes in Computer Read More …

MLA: A Tool for Multi-Perspective Conformance Checking of Business Processes

Mehr, A. S. M., de Carvalho, R. M., & van Dongen, B. (2021). MLA: A Tool for Multi-Perspective Conformance Checking of Business Processes. In ICPM 2021 Doctoral Consortium and Demo Track 2021 (pp. 35-36). (CEUR Workshop Proceedings; Vol. 3098). CEUR-WS.org. https://ceur-ws.org/Vol-3098/demo_200.pdf Abstract Existing conformance checking techniques focus more on the control-flow perspective rather than other Read More …

Aligning Event Logs to Resource-Constrained ν-Petri Nets

Sommers, D., Sidorova, N., & van Dongen, B. (2022). Aligning Event Logs to Resource-Constrained ν-Petri Nets. In L. Bernardinello, & L. Petrucci (Eds.), Application and Theory of Petri Nets and Concurrency – 43rd International Conference, PETRI NETS 2022, Proceedings (pp. 325-345). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Read More …

Evaluation of Probability Distribution Distance Metrics in Traffic Flow Outlier Detection

Andersen, E., Chiarandini, M., Hassani, M., Janicke, S., Tampakis, P., & Zimek, A. (2022). Evaluation of Probability Distribution Distance Metrics in Traffic Flow Outlier Detection. In Proceedings – 2022 23rd IEEE International Conference on Mobile Data Management, MDM 2022 (pp. 64-69). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/MDM55031.2022.00030 Abstract Recent approaches have proven the effectiveness Read More …

Aggregating Event Knowledge Graphs for Task Analysis

Klijn, E. L., Mannhardt, F., & Fahland, D. (2023). Aggregating Event Knowledge Graphs for Task Analysis. In M. Montali, A. Senderovich, & M. Weidlich (Eds.), Process Mining Workshops – ICPM 2022 International Workshops, Revised Selected Papers (pp. 493-505). (Lecture Notes in Business Information Processing; Vol. 468 LNBIP). Springer. https://doi.org/10.1007/978-3-031-27815-0_36 Abstract Aggregation of event data is a Read More …