Inferring Unobserved Events in Systems With Shared Resources and Queues

Fahland, D., Denisov, V., & van der Aalst, W. M. P. (2021). Inferring Unobserved Events in Systems With Shared Resources and Queues. Fundamenta Informaticae, 183(3-4), 203-242. https://doi.org/10.3233/FI-2021-2087 Abstract To identify the causes of performance problems or to predict process behavior, it is essential to have correct and complete event data. This is particularly important for Read More …

Visualizing Token Flows Using Interactive Performance Spectra

van der Aalst, W. M. P., Tacke Genannt Unterberg, D., Denisov, V., & Fahland, D. (2020). Visualizing Token Flows Using Interactive Performance Spectra. In R. Janicki, N. Sidorova, & T. Chatain (Eds.), Application and Theory of Petri Nets and Concurrency – 41st International Conference, PETRI NETS 2020, Proceedings (pp. 369-380). (Lecture Notes in Computer Science Read More …

Repairing Event Logs with Missing Events to Support Performance Analysis of Systems with Shared Resources

Denisov, V., Fahland, D., & van der Aalst, W. M. P. (2020). Repairing Event Logs with Missing Events to Support Performance Analysis of Systems with Shared Resources. In R. Janicki, N. Sidorova, & T. Chatain (Eds.), Application and Theory of Petri Nets and Concurrency – 41st International Conference, PETRI NETS 2020, Proceedings (pp. 239-259). (Lecture Notes Read More …

Multi-dimensional performance analysis and monitoring using integrated performance spectra

Denisov, V., Fahland, D., & Van Der Aalst, W. M. P. (2020). Multi-dimensional performance analysis and monitoring using integrated performance spectra. In C. Di Ciccio (Ed.), Proceedings of the ICPM Doctoral Consortium and Tool Demonstration Track 2020 co-located with the 2nd International Conference on Process Mining (ICPM 2020): Padua, Italy, October 4-9, 2020 (pp. 27-30). Read More …

Predictive performance monitoring of material handling systems using the performance spectrum

Denisov, V., Fahland, D., & van der Aalst, W. M. P. (2019). Predictive performance monitoring of material handling systems using the performance spectrum. In Proceedings – 2019 International Conference on Process Mining, ICPM 2019 (pp. 137-144). [8786068] Piscataway: Institute of Electrical and Electronics Engineers. DOI: 10.1109/ICPM.2019.00029 Abstract Predictive performance analysis is crucial for supporting operational Read More …

The performance spectrum miner : visual analytics for fine-grained performance analysis of processes

Denisov, Vadim, Belkina, Elena, Fahland, Dirk & van der Aalst, Wil M.P. (2018). The performance spectrum miner : visual analytics for fine-grained performance analysis of processes. CEUR Workshop Proceedings, 2196, 96-100. Abstract We present the Performance Spectrum Miner, a ProM plugin, which implements a new technique for fine-grained performance analysis of processes. The technique uses Read More …

Unbiased, fine-grained description of processes performance from event data

Denisov, V.V., Fahland, D. & van der Aalst, W.M.P. (2018). Unbiased, fine-grained description of processes performance from event data. Business Process Management – 16th International Conference, BPM 2018, Sydney, NSW, Australia, September 9-14, 2018, Proceedings. (pp. 139-157). (Lecture Notes in Computer Science, No. 11080). Springer. Abstract Performance is central to processes management and event data Read More …

Process Mining in Logistics

Process Mining in Logistics is a joint project of the Data Science Center Eindhoven and Vanderlande industries. Description Logistics processes are notoriously difficult to design, analyze, and to improve. Where classical processes are scoped around the processing of information associated to a specific unique case, logistics deals with physical objects that are grouped and processed Read More …