Applying Process Mining to Predict Customer Behavior and Recommend Actions

Background In the Dutch health care system health care insurance is obligated for all residents. The government sets the basis package and insurers compete based on price and service. Customer service is therefore very important for every health insurance company; especially in the fast changing digital world. As a result customer satisfaction is the most Read More …

Overview of efficient clustering methods for high-dimensional big data streams

Hassani, M. (2019). Overview of efficient clustering methods for high-dimensional big data streams. In O. Nasraoui, & C-E. Ben N’Cir (Eds.), Clustering Methods for Big Data Analytics (pp. 25-42). (Unsupervised and Semi-Supervised Learning). Cham: Springer. https://doi.org/10.1007/978-3-319-97864-2_2 Abstract The majority of clustering approaches focused on static data. However, a big variety of recent applications and research Read More …

Real-Time Prediction of Traveler Flow within Digital Stations

In the last decennia the pressure on different types of mobility have severely increased in the Netherlands. Therefor the need for availability and reliability has increased. Siemens Mobility supplies solutions in the Netherlands that contribute to the accessibility and quality of life in this regard. With the help of different technologies, data is being unlocked Read More …

Improving Traffic Flow Prediction in Urban Areas by Incorporating a Real-Time Outlier Detection Model

In the last decennia the pressure on different types of mobility have severely increased in the Netherlands. Therefor the need for availability and reliability has increased. Siemens Mobility supplies solutions in this regard that contribute to everyday accessibility and quality of life. With the help of different technologies, data is being unlocked through which the operation Read More …

Differential-private Process Mining (Multiple Assignments)

Within the BPR4GDPR EU project, we are researching (among others) methods that enable a privacy-aware utilization of sensitive individual information. Several anonymization techniques are not enough to completely keep the process discovery completely privacy aware (e.g. the existence of rare diseases can still be revealed from an anonymized log file). Adding exactly “the correct amount” of Read More …

Log-based vs. Model-based Concept Drift Detection

StrProMCDD is a recently published work that detects concept drifts in event streams (see the figure below). StrProMCDD uses several model-based distance measures to detect these deviations using an adaptive window concept. In this assignment, we would like to compare the performance of this model-based approach with log-based stream clustering approaches that try to detect drifts in Read More …

Process mining meets GDPR compliance: the right to be forgotten as a use case

Zaman, R., & Hassani, M. (2019). Process mining meets GDPR compliance: the right to be forgotten as a use case. In B. van Dongen, & J. Claes (Eds.), ICPM Doctoral Consortium 2019: Proceedings of the ICPM 2019 Doctoral Consortium co-located with 1st International Conference on Process Mining (ICPM 2019) (CEUR Workshop Proceedings; Vol. 2432). CEUR-WS.org. Read More …

Optimizing customer journey using process mining and sequence-aware recommendation

Terragni, A., & Hassani, M. (2019). Optimizing customer journey using process mining and sequence-aware recommendation. In SAC ’19 Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing (pp. 57-65). New York: Association for Computing Machinery, Inc. DOI: 10.1145/3297280.3297288 Abstract Customer journey analysis aims at understanding customer behavior both in the traditional offline setting and through Read More …

Online comparison of streaming process discovery algorithms

Baskar, K., & Hassani, M. (2019). Online comparison of streaming process discovery algorithms. In B. Depaire, J. De Smedt , & M. Dumas (Eds.), Proceedings of the Dissertation Award, Doctoral Consortium, and Demonstration Track at BPM 2019 co-located with 17th International Conference on Business Process Management (BPM 2019) (pp. 164-168). (CEUR Workshop Proceedings; Vol. 2420). Read More …

Ensemble-based prediction of business processes bottlenecks with recurrent concept drifts

Spenrath, Y., & Hassani, M. (2019). Ensemble-based prediction of business processes bottlenecks with recurrent concept drifts. In P. Papotti (Ed.), Proceedings of the Workshops of the EDBT/ICDT 2019 Joint Conference: Lisbon, Portugal, March 26, 2019 (CEUR Workshop Proceedings; Vol. 2322). CEUR-WS.org. Abstract Bottleneck prediction is an important sub-task of process mining that aims at optimizing Read More …

Concept drift detection of event streams using an adaptive window

Hassani, M. (2019). Concept drift detection of event streams using an adaptive window. In 33rd International ECMS Conference on Modelling and Simulation, ECMS 2019 (pp. 230-239). [DSM 73] (Proceedings – European Council for Modelling and Simulation, ECMS; Vol. 33). Abstract Process mining is an emerging data mining task of gathering valuable knowledge out of the Read More …

An effective and efficient approach for supporting the generation of synthetic memory reference traces via hierarchical hidden/non-hidden Markov Models

Cuzzocrea, A., Mumolo, E., & Hassani, M. (2019). An effective and efficient approach for supporting the generation of synthetic memory reference traces via hierarchical hidden/non-hidden Markov Models. In Proceedings – 2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018 (pp. 2953-2959). [8616498] Institute of Electrical and Electronics Engineers. DOI: 10.1109/SMC.2018.00502 Abstract This paper Read More …

Effective steering of customer journey via order-aware recommendation

Goossens, J. A. J., Demewez, T., & Hassani, M. (2018). Effective steering of customer journey via order-aware recommendation. In 2018 IEEE International Conference on Data Mining Workshops (ICDMW) (pp. 828-837). Piscataway: Institute of Electrical and Electronics Engineers. DOI: 10.1109/ICDMW.2018.00123 Abstract The analysis of customer journeys is a subject undergoing an intense study recently . The Read More …

On the application of sequential pattern mining primitives to process discovery: overview, outlook and opportunity identification

Hassani, M., van Zelst, S. J., & van der Aalst, W. M. P. (2019). On the application of sequential pattern mining primitives to process discovery: overview, outlook and opportunity identification. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(6), [e1315]. DOI: 10.1002/widm.1315 Abstract Sequential pattern mining (SPM) is a well-studied theme in data mining, in Read More …

Online conformance checking: relating event streams to process models using prefix-alignments

van Zelst, S. J., Bolt Irondio, A. J., Hassani, M., van Dongen, B. F., & van der Aalst, W. M. P. (2019). Online conformance checking: relating event streams to process models using prefix-alignments. International Journal of Data Science and Analytics, 8(3), 269-284. DOI: 10.1007/s41060-017-0078-6 Abstract Companies often specify the intended behaviour of their business processes Read More …

BFSPMiner: an effective and efficient batch-free algorithm for mining sequential patterns over data streams

Hassani, M., Töws, D., Cuzzocrea, A., & Seidl, T. (2019). BFSPMiner: an effective and efficient batch-free algorithm for mining sequential patterns over data streams. International Journal of Data Science and Analytics, 8(3), 223-239. DOI: 10.1007/s41060-017-0084-8 Abstract Supporting sequential pattern mining from data streams is nowadays a relevant problem in the area of data stream mining Read More …

2IAB0 Data analytics for engineers

Learning goals Students gain insight in basic techniques for processing large amounts of data in an efficient, reliable, and consistent way. Students develop skills in understanding, interpreting, and documenting data and information in the context of realistic scenarios. Students get understanding of the data life cycle and develop skills for structuring their solutions of practical Read More …

Real-Time Process Mining for Customer Journey Data

Available process discovery have been tested in the customer journey context under offline settings. Recent online process discovery approaches like: https://ieeexplore.ieee.org/document/7376771 bring however a lot of added value for a real-time customer journey optimization. The objective of this assignment is to use two different customer journey datasets to test the effectiveness of such approaches for Read More …

Finding Patterns in Evolving Graphs

The analysis of the temporal evolution of dynamic graphs like social networks is a key challenge for understanding complex processes hidden in graph structured data. Graph evolution rules capture such processes on the level of small subgraphs by describing frequently occurring structural changes within a network. Existing rule discovery methods make restrictive assumptions on the Read More …

Using Sequential Pattern Mining to Detect Drifts in Streaming Data

BFSPMiner is an effective and efficient batch-free algorithm for mining sequential patterns over data streams was published very recently https://link.springer.com/article/10.1007/s41060-017-0084-8. An implementation of the algorithm is available here: https://github.com/Xsea/BFSPMiner. As BFSPMiner has proven to be effective (see Figures 10-14 of the paper) in different domains (see Table 1 in the paper), we would like to Read More …

Resolving kpn Customer Journey Variances through a Suitable Similarity Measure

The customer journey approach is quickly becoming the game changer within KPN  to become a customer-centric service provider and to improve the customer experience to an un-telco like level. Within this context, we have already connected various touch points of the customer, including calls, chats, store visits, online visits and engineer visits, and we are Read More …

Enriching Customer Journey Prediction in kpn with Context Data

The customer journey approach is quickly becoming the game changer within KPN to become a customer-centric service provider and to improve the customer experience to an un-telco like level. Within this context, we have already connected various touch points of the customer, including calls, chats, store visits, online visits and engineer visits, and we are Read More …

Analyzing customer journey with process mining : from discovery to recommendations

Terragni, Alessandro & Hassani, Marwan (2018). Analyzing customer journey with process mining : from discovery to recommendations. In Muhammad Younas & Jules Pagna Disso (Eds.), Proceedings – 2018 IEEE 6th International Conference on Future Internet of Things and Cloud, FiCloud 2018 (pp. 224-229). Piscataway: Institute of Electrical and Electronics Engineers (IEEE). Abstract Customer journey analysis Read More …

Towards effective generation of synthetic memory references via markovian models

Cuzzocrea, Alfredo, Mumolo, Enzo, Hassani, Marwan & Grasso, Giorgio Mario (2018). Towards effective generation of synthetic memory references via markovian models. In Ling Liu, Claudio Demartini, Ji-Jiang Yang, Thomas Conte, Kamrul Hasan, Edmundo Tovar, Zhiyong Zhang, Sheikh Iqbal Ahamed, Stelvio Cimato, Toyokazu Akiyama, Sorel Reisman, William Claycomb, Motonori Nakamura, Hiroki Takakura & Chung-Horng Lung (Eds.), Read More …

A Markov-Model-based framework for supporting real-time generation of synthetic memory references effectively and efficiently

Cuzzocrea, Alfredo, Mumolo, Enzo, Hassani, Marwan & Grasso, Giorgio Mario (2018). A Markov-Model-based framework for supporting real-time generation of synthetic memory references effectively and efficiently. Proceedings – DMSVIVA 2018 (pp. 83-90). Pittsburgh: Knowledge Systems Institute Graduate School. Abstract Driven by several real-life case studies and in-lab developments, synthetic memory reference generation has a long tradition Read More …

Detecting root causes of complaints and investigating the continuation within the customer journey

In the Dutch health care system health care insurance is obligated for all residents. The government sets the basis package and insurers compete based on price and service. Customer service is therefore very important for every health insurance company; especially in the fast changing digital world. As a result customer satisfaction is the most important Read More …

Philips HUE Product Evolution Using Stream Mining of Customer Journey

Philips HUE is a connected personal lighting system. It is controlled by a range of apps and smart home devices. To acquire Philips HUE, one starts with a starter kit that consists of a few lamps and a bridge. Subsequently, consumers decide to expand their system with additional lamps or/and physical sensors. About 50 lamps Read More …

Real-Time Model Discovery of the Service Order Process Using Stream Process Mining

Kropman Installatietechniek is a Dutch company established in 1934 and has become one of the leading companies of the Dutch installation industry. With about 800 employees, 12 regional locations and an annual turnover of more than 100 million Euro, Kropman is an integral service provider with a multidisciplinary approach. Kropman is mainly active in office Read More …

PhD position on Stream Mining for Real Time Compliance Checking

In the context of the EU H2020 project BPR4GDPR (Business Process Re-engineering and functional toolkit for GDPR compliance), a PhD position is open at the Process Analytycs (PA) group in TU/e’s Department for Mathematics and Computer Science in the domain of Stream Process Mining. Position PhD-student Department(s) Department of Mathematics & Computer Science Institutes Data Read More …

JM0210 Real-Time Process Mining (JADS)

The Real-Time Process Mining course is an advanced master-level process mining course where the following main contents will be covered: Dimensionality reduction and efficient preprocessing of log files Stream data mining Advanced topics in process mining, like: stream process discovery, online conformance checking and concept drift detection When the focus shifts to advanced topics in Read More …

BPR4GDPR

Business Process Re-engineering for General Data Protection Regulation Description The goal of BPR4GDPR is to provide a holistic framework able to support end-to-end GDPR-compliant intra- and interorganisational ICT-enabled processes at various scales, while also being generic enough, fulfilling operational requirements covering diverse application domains. To this end, proposed solutions will have a strong semantic foundation Read More …

Marwan Hassani

Dr. Marwan Hassani is assistant professor at the PA group with a focus on Real-Time Process Mining. His research interests include stream data mining, sequential pattern mining of multiple streams, efficient anytime clustering of big data streams and exploration of evolving graph data. He uses customer journey optimizationa and privacy-aware process mining as use cases for his Read More …

Publications in 2017

Article Scientific peer reviewed Arriagada-Benítez, M., Sepúlveda, M., Munoz-Gama, J. & Buijs, J.C.A.M. (2017). Strategies to automatically derive a process model from a configurable process model based on event data. Applied Sciences, 7(10):1023. Bolt, A., de Leoni, M. & van der Aalst, W.M.P. (2017). Process variant comparison: using event logs to detect differences in behavior Read More …