Action-Evolution Petri Nets: a Framework for Modeling and Solving Dynamic Task Assignment Problems

Lo Bianco, R., Dijkman, R. M., Nuijten, W. P. M., & van Jaarsveld, W. L. (2023). Action-Evolution Petri Nets: a Framework for Modeling and Solving Dynamic Task Assignment Problems. In C. Di Francescomarino, A. Burattin, C. Janiesch, & S. Sadiq (Eds.), Business Process Management: 21st International Conference, BPM 2023, Utrecht, The Netherlands, September 11–15, 2023, Read More …

Analytical Problem Solving Based on Causal, Correlational and Deductive Models

de Mast, J., Steiner, S., Nuijten, W. P. M., & Kapitan, D. (2023). Analytical Problem Solving Based on Causal, Correlational and Deductive Models. American Statistician, 77(1), 51-61. https://doi.org/10.1080/00031305.2021.2023633 Abstract Many approaches for solving problems in business and industry are based on analytics and statistical modeling. Analytical problem solving is driven by the modeling of relationships Read More …

Scheduling a Real-World Photolithography Area with Constraint Programming

Deenen, P. C., Nuijten, W. P. M., & Akcay, A. (2023). Scheduling a Real-World Photolithography Area with Constraint Programming. IEEE Transactions on Semiconductor Manufacturing, 36(4), 590-598. Article 10214506. https://doi.org/10.1109/TSM.2023.3304517 Abstract This paper studies the problem of scheduling machines in the photolithography area of a semiconductor manufacturing facility. The scheduling problem is characterized as an unrelated Read More …

Combining Deep Reinforcement Learning with Search Heuristics for Solving Multi-Agent Path Finding in Segment-based Layouts

Reijnen, R., Zhang, Y., Nuijten, W. P. M., Senaras, C., & Goldak, M. (2021). Combining Deep Reinforcement Learning with Search Heuristics for Solving Multi-Agent Path Finding in Segment-based Layouts. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI 2020) (pp. 2647-2654). Article 9308584 IEEE Press. https://doi.org/10.1109/SSCI47803.2020.9308584 Abstract A multi-agent path finding (MAPF) problem is concerned Read More …

Data-driven Support of Coaches in Professional Cycling using Race Performance Prediction

Karetnikov, A., Nuijten, W., & Hassani, M. (2021). Data-driven Support of Coaches in Professional Cycling using Race Performance Prediction. In P. Pezarat-Correia, J. Vilas-Boas, & J. Cabri (Eds.), icSPORTS 2021 – Proceedings of the 9th International Conference on Sport Sciences Research and Technology Support (pp. 43-53). SciTePress Digital Library. Abstract In individual sports, the judgment Read More …

Publications in 2017

Article Scientific peer reviewed Arriagada-Benítez, M., Sepúlveda, M., Munoz-Gama, J. & Buijs, J.C.A.M. (2017). Strategies to automatically derive a process model from a configurable process model based on event data. Applied Sciences, 7(10):1023. Bolt, A., de Leoni, M. & van der Aalst, W.M.P. (2017). Process variant comparison: using event logs to detect differences in behavior Read More …

Publications in 2016

Article Scientific peer reviewed Van Der Aa, Han, Leopold, H. & Reijers, H.A. (2016). Dealing with behavioral ambiguity in textual process descriptions. Lecture notes in computer science, 9850, 271-288. Scopus. van der Aa, J.H., Reijers, H.A. & Vanderfeesten, I.T.P. (2016). Designing like a pro : the automated composition of workflow activities. Computers in Industry, 75, Read More …