Dr. Marwan Hassani is assistant professor at the PA group with a focus on Real-Time Process Mining. His research interests include stream data mining, sequential pattern mining of multiple streams, efficient anytime clustering of big data streams and exploration of evolving graph data. He uses customer journey optimizationa and privacy-aware process mining as use cases for his research. Marwan received his PhD (2015) from RWTH Aachen University where he worked also as a postdoc until July 2016. He coauthored more than 60 scientific publications and serves as organizers for several internationally ranked workshops and multiple A* conferences in data mining.
Position: | UD |
Room: | MF 7.068 |
Tel (internal): | 3887 |
Links: | Courses External assignments Internal assignments Projects Publications |
External links: | Personal home page Google scholar page Scopus page ORCID page DBLP page TU/e page |
Recent courses
- Seminar Process Analytics (2IMI00) 2024-2025 - Objectives This seminar combines teaching research methods (in preparation for a Master project) with providing students with recent and ongoing research in the area of event data analysis and process analysis. We study recent research articles, book chapters, and Master theses on topics along the entire analysis life-cycle. Through presentation and group discussions, we work Read More ...
- Advanced Process Mining (2AMI20) 2024-2025 - Objectives After taking this course students should be able to: have a detailed understanding of the entire process mining spectrum and the methodology for process mining analysis can derive and pre-process event logs from raw data and have understand and can work with a specialized form of event data such as event knowledge graphs, or Read More ...
Recent external assignments
- Community Detection in Temporal Graphs for Capturing Pass-through Money Laundering Behaviors - Company Description TMNL (Transaction Monitoring Netherlands) was established by the five largest Dutch banks; and is the 1st initiative in the world fighting financial crime in a multi-bank setting. TMNL combines transaction data from the various banks and makes meaningful connections between this data. TMNL is creating smart models to detect these potentially unusual transactions Read More ...
- Fine-tuning Pretrained LLMs for Online Anomaly Detection in Customer Journeys of De Volksbank - Background Customer journey thinking is getting more and more established in companies. Customers are getting more volatile with higher expectations and competition is fierce. With customer journey analytics it is possible to use a personal approach on a large dataset of customer behaviour and customer experience. In the field of customer journey analytics multiple well-known Read More ...
- Guest Journey Prediction for an Effective Targeted Campaign Planning - Company Description Smart Host (https://www.smart-host.com) was founded in 2017 and is now one of the leading CRM systems for hotels in Europe. Based in Berlin, Germany we provide a SaaS solution to help hotels maximise their revenue and at the same time become better hosts by gathering valuable information about their guests and their individual Read More ...
- Online Prediction and Recommendation of Volksbank Customer Journey under Concept Drifts - Background Within companies customer journey thinking is getting more and more established. Customers are getting more volatile and competition is fierce. With customer journey analytics is it possible to use a personal approach on large dataset of customer behaviour and customer experience. In the field of customer journey analytics multiple well-known fields are combined, Read More ...
- Online Spatial Prediction Model for Citizens’ Public Space Complaints in Eindhoven - Smart cities approach does not only emphasize the implementations of new technologies in a city but also highlights the importance of using new technologies for enabling citizens’ engagement in urban planning processes. In that regard, ICTs play a vital role in (i) supporting citizens to report their complaints related to the public spaces (i.e. Read More ...
- Applying Process Mining to Predict Customer Behavior and Recommend Actions - Background In the Dutch health care system health care insurance is obligated for all residents. The government sets the basis package and insurers compete based on price and service. Customer service is therefore very important for every health insurance company; especially in the fast changing digital world. As a result customer satisfaction is the most Read More ...
- Real-Time Prediction of Traveler Flow within Digital Stations - In the last decennia the pressure on different types of mobility have severely increased in the Netherlands. Therefor the need for availability and reliability has increased. Siemens Mobility supplies solutions in the Netherlands that contribute to the accessibility and quality of life in this regard. With the help of different technologies, data is being unlocked Read More ...
- Improving Traffic Flow Prediction in Urban Areas by Incorporating a Real-Time Outlier Detection Model - In the last decennia the pressure on different types of mobility have severely increased in the Netherlands. Therefor the need for availability and reliability has increased. Siemens Mobility supplies solutions in this regard that contribute to everyday accessibility and quality of life. With the help of different technologies, data is being unlocked through which the operation Read More ...
- Resolving kpn Customer Journey Variances through a Suitable Similarity Measure - The customer journey approach is quickly becoming the game changer within KPN to become a customer-centric service provider and to improve the customer experience to an un-telco like level. Within this context, we have already connected various touch points of the customer, including calls, chats, store visits, online visits and engineer visits, and we are Read More ...
- Enriching Customer Journey Prediction in KPN with Context Data - The customer journey approach is quickly becoming the game changer within KPN to become a customer-centric service provider and to improve the customer experience to an un-telco like level. Within this context, we have already connected various touch points of the customer, including calls, chats, store visits, online visits and engineer visits, and we are Read More ...
Recent internal assignments
- Online Spatial Prediction Model for Citizens’ Public Space Complaints in Eindhoven - Smart cities approach does not only emphasize the implementations of new technologies in a city but also highlights the importance of using new technologies for enabling citizens’ engagement in urban planning processes. In that regard, ICTs play a vital role in (i) supporting citizens to report their complaints related to the public spaces (i.e. Read More ...
- Log-based vs. Model-based Concept Drift Detection - StrProMCDD is a recently published work that detects concept drifts in event streams (see the figure below). StrProMCDD uses several model-based distance measures to detect these deviations using an adaptive window concept. In this assignment, we would like to compare the performance of this model-based approach with log-based stream clustering approaches that try to detect drifts in Read More ...
- Real-Time Process Mining for Customer Journey Data - Available process discovery have been tested in the customer journey context under offline settings. Recent online process discovery approaches like: https://ieeexplore.ieee.org/document/7376771 bring however a lot of added value for a real-time customer journey optimization. The objective of this assignment is to use two different customer journey datasets to test the effectiveness of such approaches for Read More ...
- Finding Patterns in Evolving Graphs - The analysis of the temporal evolution of dynamic graphs like social networks is a key challenge for understanding complex processes hidden in graph structured data. Graph evolution rules capture such processes on the level of small subgraphs by describing frequently occurring structural changes within a network. Existing rule discovery methods make restrictive assumptions on the Read More ...
- Using Sequential Pattern Mining to Detect Drifts in Streaming Data - BFSPMiner is an effective and efficient batch-free algorithm for mining sequential patterns over data streams was published very recently https://link.springer.com/article/10.1007/s41060-017-0084-8. An implementation of the algorithm is available here: https://github.com/Xsea/BFSPMiner. As BFSPMiner has proven to be effective (see Figures 10-14 of the paper) in different domains (see Table 1 in the paper), we would like to Read More ...
Recent projects
- Smart Journey Mining: Towards successful digitalisation of services - The digitalisation of our society’s service systems has fundamentally changed the way services are delivered to, and experienced by, humans. Although digital services are supposed to simplify our lives and increase our efficiency, they often frustrate and burden customers, users, and employees. The overall goal is to increase the quality of services and support the Read More ...
- BPR4GDPR - Business Process Re-engineering for General Data Protection Regulation Description The goal of BPR4GDPR is to provide a holistic framework able to support end-to-end GDPR-compliant intra- and interorganisational ICT-enabled processes at various scales, while also being generic enough, fulfilling operational requirements covering diverse application domains. To this end, proposed solutions will have a strong semantic foundation Read More ...
Recent publications
- Unsupervised Anomaly Detection of Prefixes in Event Streams Using Online Autoencoders - Musaj, Z., & Hassani, M. (2025). Unsupervised Anomaly Detection of Prefixes in Event Streams Using Online Autoencoders. In M. Comuzzi, D. Grigori, M. Sellami, & Z. Zhou (Eds.), Cooperative Information System: 30th International Conference, CoopIS 2024, Porto, Portugal, November 19–21, 2024, Proceedings (pp. 93-110). Springer. https://doi.org/10.1007/978-3-031-81375-7_6 Abstract In this work we address the problem of Read More ...
- Autoencoder-Based Detection of Delays, Handovers and Workloads over High-Level Events - Verwijst, I., Mennens, R., Scheepens, R., & Hassani, M. (2025). Autoencoder-Based Detection of Delays, Handovers and Workloads over High-Level Events. In M. Comuzzi, D. Grigori, M. Sellami, & Z. Zhou (Eds.), Cooperative Information Systems: 30th International Conference, CoopIS 2024, Porto, Portugal, November 19–21, 2024, Proceedings (pp. 111-128). (Lecture Notes in Computer Science (LNCS); Vol. 15506). Read More ...
- Handling Catastrophic Forgetting: Online Continual Learning for Next Activity Prediction - Verbeek, T., & Hassani, M. (2025). Handling Catastrophic Forgetting: Online Continual Learning for Next Activity Prediction. In M. Comuzzi, D. Grigori, M. Sellami, & Z. Zhou (Eds.), Cooperative Information Systems – 30th International Conference, CoopIS 2024, Proceedings: 30th International Conference, CoopIS 2024, Porto, Portugal, November 19–21, 2024, Proceedings (pp. 225-242). (Lecture Notes in Computer Science Read More ...
- Outlier-Weighted Traffic Flow Prediction Using Online Autoencoders - Choudhary, H., Alkhodre, A. B., & Hassani, M. (2025). Outlier-Weighted Traffic Flow Prediction Using Online Autoencoders. In R. Chbeir, S. Ilarri, Y. Manolopoulos, P. Z. Revesz, J. Bernardino, & C. K. Leung (Eds.), Database Engineered Applications: 28th International Symposium, IDEAS 2024, Bayonne, France, August 26–29, 2024, Proceedings (pp. 203-219). (Lecture Notes in Computer Science (LNCS); Read More ...
- Topology-Agnostic Detection of Temporal Money Laundering Flows in Billion-Scale Transactions - Tariq, H., & Hassani, M. (2023). Topology-Agnostic Detection of Temporal Money Laundering Flows in Billion-Scale Transactions. arXiv.org. https://doi.org/10.48550/arXiv.2309.13662
- Proceedings of the ICPM Doctoral Consortium and Demo Track 2022 co-located with 4th International Conference on Process Mining (ICPM 2022), Bolzano, Italy, October, 2022 - Hassani, M., Koschmider, A., Comuzzi, M., Maggi, F. M., & Pufahl, L. (Eds.) (2022). Proceedings of the ICPM Doctoral Consortium and Demo Track 2022 co-located with 4th International Conference on Process Mining (ICPM 2022), Bolzano, Italy, October, 2022. (CEUR Workshop Proceedings; Vol. 3299). CEUR-WS.org. https://ceur-ws.org/Vol-3299
- On Inferring a Meaningful Similarity Metric for Customer Behaviour - van den Berg, S., & Hassani, M. (2021). On Inferring a Meaningful Similarity Metric for Customer Behaviour. In Y. Dong, N. Kourtellis, B. Hammer, & J. A. Lozano (Eds.), Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track – European Conference, ECML PKDD 2021, Proceedings (pp. 234-250). (Lecture Notes in Computer Science (including Read More ...
- Leveraging Contrastive Learning and Spatial Encoding for Prediction in Traffic Networks with Expanding Infrastructure - You Xu and Marwan Hassani, ACM/SIGAPP Symposium On Applied Computing (SAC 2025) in Catania, Italy.
- Autoencoder-based Continual Outlier Correlation Detection for Real-Time Traffic Flow Prediction - Choudhary, H., & Hassani, M. (2024). Autoencoder-based Continual Outlier Correlation Detection for Real-Time Traffic Flow Prediction. In 39th Annual ACM Symposium on Applied Computing, SAC 2024 (pp. 218-220) https://doi.org/10.1145/3605098.3636162 Abstract In urban landscapes, traffic congestion, often identified by outlier events like accidents or constructions, poses a significant challenge. These outliers result in abrupt traffic fluctuations, Read More ...
- Online Next Activity Prediction Under Concept Drifts - Kosciuszek, T., & Hassani, M. (2024). Online Next Activity Prediction Under Concept Drifts. In J. P. A. Almeida, C. Di Ciccio, & C. Kalloniatis (Eds.), Advanced Information Systems Engineering Workshops: CAiSE 2024 International Workshops, Limassol, Cyprus, June 3–7, 2024, Proceedings (pp. 335-346). (Lecture Notes in Business Information Processing; Vol. 521). https://doi.org/10.1007/978-3-031-61003-5_28 Abstract Existing research in Read More ...
Recent awards
- Best Paper Award at SAC 2025 for You Xu and Marwan Hassani - You Xu and Marwan Hassani have received the Best Paper Award Distributed Systems in the ACM/SIGAPP Symposium On Applied Computing (SAC 2025) in Catania, Italy with the paper titled “Leveraging Contrastive Learning and Spatial Encoding for Prediction in Traffic Networks with Expanding Infrastructure“. Congratulations to You and Marwan!