Predicting Business Process Bottlenecks In Online Events Streams Under Concept Drifts

Spenrath, Y., & Hassani, M. (2020). Predicting Business Process Bottlenecks In Online Events Streams Under Concept Drifts. In M. Steglich, C. Muller, G. Neumann, & M. Walther (Eds.), Proceedings of European Council for Modelling and Simulation (ECMS) 2020 (pp. 190-196). (Proceedings European Council for Modelling and Simulation; Vol. 34, No. 1). European Council for Modeling Read More …

Why did my Consumer Shop? Learning an Efficient Distance Metric for Retailer Transaction Data

Spenrath, Y., Hassani, M., van Dongen, B. F., & Tariq, H. Why did my Consumer Shop? Learning an Efficient Distance Metric for Retailer Transaction Data. In Y. Dong, D. Mladenic, & C. Saunders (Eds.), Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track – European Conference, ECML PKDD 2020, Proceedings (pp. Read More …

Ensemble-based prediction of business processes bottlenecks with recurrent concept drifts

Spenrath, Y., & Hassani, M. (2019). Ensemble-based prediction of business processes bottlenecks with recurrent concept drifts. In P. Papotti (Ed.), Proceedings of the Workshops of the EDBT/ICDT 2019 Joint Conference: Lisbon, Portugal, March 26, 2019 (CEUR Workshop Proceedings; Vol. 2322). CEUR-WS.org. Abstract Bottleneck prediction is an important sub-task of process mining that aims at optimizing Read More …

JM0210 Real-Time Process Mining (JADS)

The Real-Time Process Mining course is an advanced master-level process mining course where the following main contents will be covered: Dimensionality reduction and efficient preprocessing of log files Stream data mining Advanced topics in process mining, like: stream process discovery, online conformance checking and concept drift detection When the focus shifts to advanced topics in Read More …