Foundations of Data Analytics (2IAB1) 2024-2025

General learning goals Use basic statistical concepts and techniques and perform appropriate statistical tests Choose and apply suitable visualization techniques Analyze and model data using linear regression, clustering, decision tree mining and association rules learning Read and make simple database schemes and simple queries to a database. Clean data, choose and apply data transformations, data Read More …

Foundations of Data Analytics (2IAB1) 2023

Learning goals Working with data data exploration statistical techniques data visualisation data mining data organization and data retrieval Programming (customizable, reproducible) Communication skills (visualisations, a poster and a pitch in the assignments) Systematic way to approach problems (“scientific method”)

Discover Context-Rich Local Process Models (Extended Abstract)

Brunings, M., Fahland, D., & Verbeek, E. (2022). Discover Context-Rich Local Process Models (Extended Abstract). In M. Hassani, A. Koschmider, M. Comuzzi, F. M. Maggi, & L. Pufahl (Eds.), ICPM 2022 Doctoral Consortium and Demo Track 2022: Proceedings of the ICPM Doctoral Consortium and Demo Track 2022 (ICPM-D 2022), Bolzano, Italy, October, 2022 (pp. 100-103). Read More …

Defining Meaningful Local Process Models

Brunings, M., Fahland, D., & van Dongen, B. (2022). Defining Meaningful Local Process Models. In M. Koutny, F. Kordon, & D. Moldt (Eds.), Transactions on Petri Nets and Other Models of Concurrency XVI (pp. 24-48). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 13220 LNCS). Read More …

Defining meaningful local process models

Brunings, M., Fahland, D., & van Dongen, B. (2020). Defining meaningful local process models. In W. van der Aalst, R. Bergenthum, & J. Carmona (Eds.), ATAED 2020 Algorithms & Theories for the Analysis of Event Data 2020: Proceedings of the International Workshop on Algorithms & Theories for the Analysis of Event Data 2020: Satellite event Read More …

2IAB0 Data analytics for engineers

Learning goals Students gain insight in basic techniques for processing large amounts of data in an efficient, reliable, and consistent way. Students develop skills in understanding, interpreting, and documenting data and information in the context of realistic scenarios. Students get understanding of the data life cycle and develop skills for structuring their solutions of practical Read More …

JBG030 DBL Data Challenge

The objective of the Data Challenge courses is to teach students how to perform large-scale data-driven analyses themselves, combining the technical skills acquired earlier in the Data Science program with insights gained in methodological courses. In the first Data Challenge 1, students will get the possibility to apply the methods and techniques acquired during the Read More …

JBG060 Data Challenge 3

The objective of the Data Challenge courses is to teach students how to perform large-scale data-driven analyses themselves, combining technical skills acquired earlier with insights gained in methodological courses. The focus of Data Challenge 3 is to take students through the entire life-cycle of a data analysis for public stakeholders, starting in a typical situation Read More …