CPN IDE: An Extensible Replacement for CPN Tools That Uses Access/CPN

Verbeek, E., & Fahland, D. (2021). CPN IDE: An Extensible Replacement for CPN Tools That Uses Access/CPN. In M. Jans, G. Janssenswillen, A. Kalenkova , & F. M. Maggi (Eds.), ICPM 2021 Doctoral Consortium and Demo Track 2021: Proceedings of the ICPM Doctoral Consortium and Demo Track 2021 co-located with 10th International Conference on Process Read More …

Augmented Business Process Management Systems: A Research Manifesto

Dumas, M., Fournier, F., Limonad, L., Marrella, A., Montali, M., Rehse, J-R., Accorsi, R., Calvanese, D., Giacomo, G. D., Fahland, D., Gal, A., Rosa, M. L., Völzer, H., & Weber, I. (2022). Augmented Business Process Management Systems: A Research Manifesto. CoRR, abs/2201.12855. https://dblp.org/db/journals/corr/corr2201.html#abs-2201-12855

Inferring Unobserved Events in Systems With Shared Resources and Queues

Fahland, D., Denisov, V., & van der Aalst, W. M. P. (2021). Inferring Unobserved Events in Systems With Shared Resources and Queues. Fundamenta Informaticae, 183(3-4), 203-242. https://doi.org/10.3233/FI-2021-2087 Abstract To identify the causes of performance problems or to predict process behavior, it is essential to have correct and complete event data. This is particularly important for Read More …

Multi-Dimensional Event Data in Graph Databases

Esser, S., & Fahland, D. (2021). Multi-Dimensional Event Data in Graph Databases. Journal on Data Semantics, 10(1-2), 109–141. https://doi.org/10.1007/s13740-021-00122-1 Abstract Process event data is usually stored either in a sequential process event log or in a relational database. While the sequential, single-dimensional nature of event logs aids querying for (sub)sequences of events based on temporal Read More …

Process Discovery Using Graph Neural Networks

Sommers, D., Menkovski, V., & Fahland, D. (2021). Process Discovery Using Graph Neural Networks. In C. Di Ciccio, C. Di Francescomarino, & P. Soffer (Eds.), Proceedings – 2021 3rd International Conference on Process Mining, ICPM 2021 (pp. 40-47) https://doi.org/10.1109/ICPM53251.2021.9576849 Abstract Automatically discovering a process model from an event log is the prime problem in process Read More …

Striking a new Balance in Accuracy and Simplicity with the Probabilistic Inductive Miner

Brons, D., Scheepens, R., & Fahland, D. (2021). Striking a new Balance in Accuracy and Simplicity with the Probabilistic Inductive Miner. In C. Di Ciccio, C. Di Francescomarino, & P. Soffer (Eds.), Proceedings – 2021 3rd International Conference on Process Mining, ICPM 2021 (pp. 32-39) https://doi.org/10.1109/ICPM53251.2021.9576864 Abstract Numerous process discovery techniques exist for generating process Read More …

Business Process Management – 18th International Conference, BPM 2020, Seville, Spain, September 13-18, 2020, Proceedings

Fahland, D., Ghidini, C., Becker, J., & Dumas, M. (Eds.) (2020). Business Process Management – 18th International Conference, BPM 2020, Seville, Spain, September 13-18, 2020, Proceedings. (Lecture Notes in Computer Science; Vol. 12168). Springer. https://doi.org/10.1007/978-3-030-58666-9

Business Process Management Forum – BPM Forum 2020, Seville, Spain, September 13-18, 2020, Proceedings

Fahland, D., Ghidini, C., Becker, J., & Dumas, M. (Eds.) (2020). Business Process Management Forum – BPM Forum 2020, Seville, Spain, September 13-18, 2020, Proceedings. (Lecture Notes in Business Information Processing; Vol. 392). Springer. https://doi.org/10.1007/978-3-030-58638-6

Information-preserving abstractions of event data in process mining

Leemans, S. J. J., & Fahland, D. (2020). Information-preserving abstractions of event data in process mining. Knowledge and Information Systems, 62(3), 1143–1197. https://doi.org/10.1007/s10115-019-01376-9 Abstract Process mining aims at obtaining information about processes by analysing their past executions in event logs, event streams, or databases. Discovering a process model from a finite amount of event data Read More …

Classifying and Detecting Task Executions and Routines in Processes Using Event Graphs

Klijn, E. L., Mannhardt, F., & Fahland, D. (2021). Classifying and Detecting Task Executions and Routines in Processes Using Event Graphs. In A. Polyvyanyy, M. T. Wynn, A. Van Looy, & M. Reichert (Eds.), Business Process Management Forum, BPM 2021, Proceedings (pp. 212-229). (Lecture Notes in Business Information Processing; Vol. 427 LNBIP). https://doi.org/10.5281/zenodo.5091610, https://doi.org/10.1007/978-3-030-85440-9_13 Abstract Business Read More …

Using graph data structures for event logs

Esser, S., & Fahland, D. (2019). Using graph data structures for event logs. https://doi.org/10.5281/zenodo.3333831 Abstract Process mining as described in by Wil van der Aalst in is a combination of data mining and business process management to a new discipline. The general purpose of process mining is to derive process insights from event data captured Read More …

Visualizing Token Flows Using Interactive Performance Spectra

van der Aalst, W. M. P., Tacke Genannt Unterberg, D., Denisov, V., & Fahland, D. (2020). Visualizing Token Flows Using Interactive Performance Spectra. In R. Janicki, N. Sidorova, & T. Chatain (Eds.), Application and Theory of Petri Nets and Concurrency – 41st International Conference, PETRI NETS 2020, Proceedings (pp. 369-380). (Lecture Notes in Computer Science Read More …

Scalable alignment of process models and event logs: An approach based on automata and S-components

Reißner, D., Armas-Cervantes, A., Conforti, R., Dumas, M., Fahland, D., & La Rosa, M. (2020). Scalable alignment of process models and event logs: An approach based on automata and S-components. Information Systems, 94, [101561]. https://doi.org/10.1016/j.is.2020.101561 Abstract Given a model of the expected behavior of a business process and given an event log recording its observed Read More …

Repairing Event Logs with Missing Events to Support Performance Analysis of Systems with Shared Resources

Denisov, V., Fahland, D., & van der Aalst, W. M. P. (2020). Repairing Event Logs with Missing Events to Support Performance Analysis of Systems with Shared Resources. In R. Janicki, N. Sidorova, & T. Chatain (Eds.), Application and Theory of Petri Nets and Concurrency – 41st International Conference, PETRI NETS 2020, Proceedings (pp. 239-259). (Lecture Notes Read More …

Multi-dimensional performance analysis and monitoring using integrated performance spectra

Denisov, V., Fahland, D., & Van Der Aalst, W. M. P. (2020). Multi-dimensional performance analysis and monitoring using integrated performance spectra. In C. Di Ciccio (Ed.), Proceedings of the ICPM Doctoral Consortium and Tool Demonstration Track 2020 co-located with the 2nd International Conference on Process Mining (ICPM 2020): Padua, Italy, October 4-9, 2020 (pp. 27-30). Read More …

Identifying and reducing errors in remaining time prediction due to inter-case dynamics

Klijn, E. L., & Fahland, D. (2020). Identifying and reducing errors in remaining time prediction due to inter-case dynamics. In B. van Dongen, M. Montali, & M. T. Wynn (Eds.), Proceedings – 2020 2nd International Conference on Process Mining, ICPM 2020 (pp. 25-32). [9229927] Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/ICPM49681.2020.00015 Abstract Remaining time prediction Read More …

Detecting system-level behavior leading to dynamic bottlenecks

Toosinezhad, Z., Fahland, D., Köroglu, Ö., & Van Der Aalst, W. M. P. (2020). Detecting system-level behavior leading to dynamic bottlenecks. In B. van Dongen, M. Montali, & M. T. Wynn (Eds.), Proceedings – 2020 2nd International Conference on Process Mining, ICPM 2020 (pp. 17-24). [9230102] Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/ICPM49681.2020.00014 Abstract Dynamic Read More …

Defining meaningful local process models

Brunings, M., Fahland, D., & van Dongen, B. (2020). Defining meaningful local process models. In W. van der Aalst, R. Bergenthum, & J. Carmona (Eds.), ATAED 2020 Algorithms & Theories for the Analysis of Event Data 2020: Proceedings of the International Workshop on Algorithms & Theories for the Analysis of Event Data 2020: Satellite event Read More …

Process mining for six sigma: a guideline and tool support

Graafmans, T. L. F., Türetken, O., Poppelaars, J. J. G. H., & Fahland, D. (Accepted/In press). Process mining for six sigma: a guideline and tool support. Business & Information Systems Engineering, 63(3), 277-300. https://doi.org/10.1007/s12599-020-00649-w. Abstract Process mining offers a set of techniques for gaining data-based insights into business processes from event logs. The literature acknowledges Read More …

Storing and querying multi-dimensional process event logs using graph databases

Esser, S., & Fahland, D. (2019). Storing and querying multi-dimensional process event logs using graph databases. In 15th International Workshop on Business Process Intelligence Abstract Process event data is usually stored either in a sequential process event log or in a relational database. While the sequential, single-dimensional nature of event logs aids querying for event Read More …

Predictive performance monitoring of material handling systems using the performance spectrum

Denisov, V., Fahland, D., & van der Aalst, W. M. P. (2019). Predictive performance monitoring of material handling systems using the performance spectrum. In Proceedings – 2019 International Conference on Process Mining, ICPM 2019 (pp. 137-144). [8786068] Piscataway: Institute of Electrical and Electronics Engineers. DOI: 10.1109/ICPM.2019.00029 Abstract Predictive performance analysis is crucial for supporting operational Read More …

Performance mining for batch processing using the performance spectrum

Klijn, E. L., & Fahland, D. (2019). Performance mining for batch processing using the performance spectrum. In 15th International Workshop on Business Process Intelligence Abstract Performance analysis from process event logs is a central element of business process management and improvement. Established performance analysis techniques aggregate time-stamped event data to identify bottlenecks or to visualize Read More …

Describing behavior of processes with many-to-many interactions

Fahland, D. (2019). Describing behavior of processes with many-to-many interactions. In S. Haar, & S. Donatelli (Eds.), Application and Theory of Petri Nets and Concurrency – 40th International Conference, PETRI NETS 2019, Proceedings (pp. 3-24). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11522 LNCS). Read More …

Information-preserving abstractions of event data in process mining

Leemans, S. J. J., & Fahland, D. (2019). Information-preserving abstractions of event data in process mining. Knowledge and Information Systems. DOI: 10.1007/s10115-019-01376-9 Abstract Process mining aims at obtaining information about processes by analysing their past executions in event logs, event streams, or databases. Discovering a process model from a finite amount of event data thereby Read More …

The performance spectrum miner : visual analytics for fine-grained performance analysis of processes

Denisov, Vadim, Belkina, Elena, Fahland, Dirk & van der Aalst, Wil M.P. (2018). The performance spectrum miner : visual analytics for fine-grained performance analysis of processes. CEUR Workshop Proceedings, 2196, 96-100. Abstract We present the Performance Spectrum Miner, a ProM plugin, which implements a new technique for fine-grained performance analysis of processes. The technique uses Read More …

Who is behind the model? classifying modelers based on pragmatic model features

Burattin, Andrea, Soffer, Pnina, Fahland, Dirk, Mendling, Jan, Reijers, Hajo A., Vanderfeesten, Irene, Weidlich, Matthias & Weber, Barbara (2018). Who is behind the model? classifying modelers based on pragmatic model features. In Ingo Weber, Jan vom Brocke, Marco Montali & Mathias Weske (Eds.), Business Process Management – 16th International Conference, BPM 2018, Proceedings (pp. 322-338). Read More …

Unbiased, fine-grained description of processes performance from event data

Denisov, V.V., Fahland, D. & van der Aalst, W.M.P. (2018). Unbiased, fine-grained description of processes performance from event data. Business Process Management – 16th International Conference, BPM 2018, Sydney, NSW, Australia, September 9-14, 2018, Proceedings. (pp. 139-157). (Lecture Notes in Computer Science, No. 11080). Springer. Abstract Performance is central to processes management and event data Read More …

Scalable process discovery and conformance checking

Leemans, S.J.J., Fahland, D. & van der Aalst, W.M.P. (2018). Scalable process discovery and conformance checking. Software and Systems Modeling, 17(2), 599-631. Abstract Considerable amounts of data, including process events, are collected and stored by organisations nowadays. Discovering a process model from such event data and verification of the quality of discovered models are important Read More …

Using behavioral context in process mining : exploration, preprocessing and analysis of event data

Lu, X. (2018). Using behavioral context in process mining : exploration, preprocessing and analysis of event data. Eindhoven: Technische Universiteit Eindhoven. ((Co-)promot.: Wil van der Aalst, Dirk Fahland & Nicola Zannone)

A visualization of human physical risks in manufacturing processes using BPMN

Polderdijk, Melanie, Vanderfeesten, Irene, Erasmus, Jonnro, Traganos, Kostas, Bosch, Tim, van Rhijn, Gu & Fahland, Dirk (2018). A visualization of human physical risks in manufacturing processes using BPMN. Business Process Management Workshops – BPM 2017 International Workshops, Revised Papers (pp. 732-743). (Lecture Notes in Business Information Processing, No. 308). Springer. Abstract Process models are schematic Read More …

The imprecisions of precision measures in process mining

Tax, N., Lu, X., Sidorova, N., Fahland, D. & van der Aalst, W.M.P. (2018). The imprecisions of precision measures in process mining. Information Processing Letters, 135, 1-8. Abstract In process mining, precision measures are used to quantify how much a process model overapproximates the behavior seen in an event log. Although several measures have been Read More …

Dynamic skipping and blocking, dead path elimination for cyclic workflows, and a local semantics for inclusive gateways

Fahland, Dirk & Völzer, Hagen (2018). Dynamic skipping and blocking, dead path elimination for cyclic workflows, and a local semantics for inclusive gateways. Information Systems, 78, 126-143. Abstract We propose and study dynamic versions of the classical flexibility constructs ‘skip’ and ‘block’ for workflows and motivate and define a formal semantics for them. We show Read More …

Linking data and process perspectives for conformance analysis

Alizadeh, M., Lu, X., Fahland, D., Zannone, N. & van der Aalst, W.M.P. (2018). Linking data and process perspectives for conformance analysis. Computers and Security, 73, 172-193. Abstract The detection of data breaches has become a major challenge for most organizations. The problem lies in the fact that organizations often lack proper mechanisms to control Read More …

Publications in 2017

Article Scientific peer reviewed Arriagada-Benítez, M., Sepúlveda, M., Munoz-Gama, J. & Buijs, J.C.A.M. (2017). Strategies to automatically derive a process model from a configurable process model based on event data. Applied Sciences, 7(10):1023. Bolt, A., de Leoni, M. & van der Aalst, W.M.P. (2017). Process variant comparison: using event logs to detect differences in behavior Read More …